全体对称矩阵的维数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:00:28
表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的
共有n(n+1)/2类!因为实数域上全体n阶对称矩阵组成的集合构成一个n(n+1)/2的线性空间,按照同构的原理,共有n(n+1)/2类!
线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T
可任意排列,但必须与P的列对应
很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不
对称矩阵的根据定义判定.A'=A正定矩阵的判定方法有多种,常用的有:1.各介顺序主子式均大于零2.所有的秩都大于0.共轭矩阵的判定根据定义.已经很详细了~建议你到网络上去找一找课件看看.
记E(ij)是第i行第j列元素为1,其余元素是0的矩阵,则E(ij)+E(ji),1
关于这个我建议你应该仔细看一下矩阵秩的定义,对于3阶实对称矩阵来说,矩阵秩表示它至少有一个2阶子矩阵的行列式为0,而3阶子矩阵即矩阵本身的行列式为0再问:一下子忽略了定义。
一个基是diag(1,0,...,0),diag(0,1,0,...0),.,diag(0,0,0,...,1)维数为n
全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi
证:设A是可逆的对称矩阵,则A'=A.(对称的充要条件)所以(A^(-1))'=(A')^(-1)=A^(-1).(性质:逆的转置等于转置的逆)所以A^(-1)是对称矩阵.(对称的充要条件)
矩阵是2维的.因为矩阵同时有行和列,行是一维,列是一维,所以是2维的.
设正惯性系数是p,负惯性系数是q,可以先列举一下,当p=0,q可以从0取到n,这样就有n+1种情况当p=1,q可以从0取到n-1,这样就有n种情况.当p=n,q只能取0,是1种情况所以1+2+3+.+
2维.主对角线上的元素为0.E_12,E_21为这个线性空间的一组基.
这个不需要解特征方程求根因为1A的行列式等于所有特征值的积2A的对角线上元素之和等于所以特征值的和因为是2阶的,所以只有两个特征值.四个元素都是1,所以|A|=0,由第1条,所以有一个特征值是0由第2
3阶与2阶不能加.所以得是同阶.n阶实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法构成R上的线性空间,(验证简单,自己完成).维数是1+2+……+n=n(n+1)/2.基可以用{Eij}1≤i≤j
应该是(1x2)可以有两种解释:一是从数系理论理解,过于专业,我就不说了.二是简易的理因为复平面是二维的做如下对应关系(a,b)->a+bi其中加减和数乘运算同一般的向量运算,约定乘法如下(a,b)*
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
必要性:(1)AB是对称矩阵=>(AB)'=AB(2)又(AB)'=B'A',且A,B为对称矩阵=>A'=A,B'=B故(AB)'=B'A'=BA由(1)(2)知AB=BA充分性:AB=BA,而A,B