克莱姆2x1 x2-5x3 x4=8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:43:13
克莱姆2x1 x2-5x3 x4=8
1/1x2x3+1/2x3x4+1/3x4x5+.+1/11x12x13=

原式=﹙1-1/2-1/3﹚+﹙1/2-1/3-1/4﹚+﹙1/3-1/4-1/5﹚+······+﹙1/11-1/12-13/13﹚=1-1/13=12/13

线性代数二次型问题.用配方法化下列二次型喂标准型,并写出相应的初等变换.f=x1x2+x2x3+x3x4.

解:令x1=y1+y2,x2=y1-y2,x3=y3,x4=y4f=y1^2-y2^2+y1y3-y2y3+y3y4=(y1+y3/2)^2-(y2+y3/2)^2+y3^2y3y4=z1^2-z2^

1x2X3+2x3X4+3x4X5+…+7X8X9=?

一般的,有:(n-1)n(n+1)=n^3-n{n^3}求和公式:Sn=[n(n+1)/2]^2{n}求和公式:Sn=n(n+1)/21x2x3+2x3x4+3x4x5+.+7x8x9=2^3-2+3

1x2x3=6 3x4x5=60 5x6x7=210 2x3x4=24 4x5x6=120三个连续自然数(0除外)的乘积

2和3因为三个连续自然数至少有一个是偶数,且大于或等于2,所以它们的乘积一定是2的倍数三个连续自然数有一个是3的倍数,所以它们的乘积一定是3的倍数

1/1x2x3+1/2x3x4+1/3x4x5+.+1/9x10x11=

1/n(n+1)(n+2)=1/2*[1/n-2/(n+1)+1/(n+2)]原式=1/2*(1-2*1/2+1/3+1/2-2*1/3+1/4+.+1/9-2*1/10+1/11)=1/2*(1-1

1x2=1/3(1x2x3=0x1x2 ) 2x3=1/3(2x3x4-1x2x3) 3x4=1/3(3x4x5- 2x

nx(n+1)=1/3[n(n+1)(n+2)-(n-1)n(n+1)]1x2+2x3+3x4+...+nx(n+1)=1/3[1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+

例:1×2=1/3x(1X2X3-0X1X2) 2x3=1/3x(2x3x4-1x2x3) 3X4=1/3X(3X4X5

读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);1×2+2×3+3×4+…+10×11=1/3(1×2×3-0×1×2)+1/3(2×3×4-1×2×3)+1

1x2=1|3(1x2x3-0x1x2) 2x3=1|3(2x3x4-1x2x3) 3x4=1|3(3x4x5-2x3x

3*(1x2+2x3+3x4+...+99x100)=3*1/3*(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+99x100x101-98x99x100)=99x100x1

1x2=三分之一{1x2x3-0x1x2};2x3-三分之一{2x3x4-1x2x3}:3x4-三分之一{3x4x5-2

1X2+2X3+3X4+、、、、、、+nX(n+1)=(1/3)(1*2*3-0*1*2)+(1/3)(2*3*4-1*2*3)+(1/3)(3*4*5-2*3*4)+.+(1/3)[n*(n+1)(

1x2x3+2x3x4+3x4x5+...+7x8x9=,

因为1x2x3=(1x2x3×4-0x1x2×3)/42x3x4=(2x3x4×5-1x2x3×4)/4.7x8x9=(7x8x9×10-6x7x8x9)/4所以1x2x3+2x3x4+3x4x5+…

根号[(1x2x3+2x4x6+...+nx2nx3n)/(1x3x4+2x6x8+...+nx3nx4n))=?

1x2x3/1x3x4=2x4x6/2x6x8=------=nx2nx3n/nx3nx4n=1/2[(1x2x3+2x4x6+...+nx2nx3n)/(1x3x4+2x6x8+...+nx3nx4

1x2x3+2x3x4+3x4x5+4x5x6+...+n(n+1)(n+2)=

原式=1/4(-0*1*2*3+1*2*3*4)+1/4(-1*2*3*4+2*3*4*5)+……+1/4[-(n-1)n(n+1)(n+2)+n(n+1)(n+2)(n+3)]=1/4[-0*1*2

1、 已知方程x2+bx+c=0及x2+cx+b=0分别有两个正整数根x1,x2和x3,x4,且x1x2>0,x3x4>

根据韦达定理x1x2=c>0x3x4=b>0x1+x2=-bx3+x4=-c因为两个方程都有两个正整数根x1,x2,x3,x4都是正整数因此c和b也是正整数c-b=x1x2-x1-x2=(x1-1)(

一道找规律的题!观察下面三个特殊等式:1x2=1/3(1x2x3-0x1x2); 2x3=1/3(2x3x4-1x2x3

(1)1x2+2x3+…+99x100+100x101==1/3x100x101x102=343400(2)1x2+2x3+3x4+…+n(n+1)(n为正整数)=1/3n(n+1)(n+2)(3)1

阅读下列材料: 1x2=3分之1(1x2x3-0x1x2), 2x3=3分之1(2x3x4-1x2x3), 3x4=3分

(1)1x2+2x3+3x4+…+10x11=1*10*11*12/3=440(2)原式=n(n+1)(n+2)/3(3)1x2x3+2x3x4+3x4x5+…+7x8x9=1x2x3×4/4-0×1

观察下列各式:1X2=1/3(1x2x3-0x1x2) 2x3=1/3(2x3x4-1x2x3) 3x4=1/3(3x4

3*(1x2+2x3+3x4+...+99x100)=3*1/3*(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+99x100x101-98x99x100)=99x100x1