偶数阶反对称矩阵行列式为完全平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:05:44
为便于书写,用A'表示A的转置矩阵:令B=(A+A')/2,C=(A-A')/2,则A=B+C其中B是对称矩阵(B'=B)C是反对称矩阵(C'=-C)再问:看不懂再答:哪里看不懂再问:B=(A+A‘’
由已知,A^T=-A,B^T=-B所以,AB为反称矩阵(AB)^T=-ABB^TA^T=-AB(-B)(-A)=-ABBA=-ABAB=-BA再问:B^TA^T=-AB,为什么是-AB,而不是BA,不
1.若M是对称矩阵且对所有的x总有x^TMx=0,那么M=0单位阵的第k列记成e_k取x=e_k即知M(k,k)=0再取x=e_j+e_k即知M(j,k)=02.奇数阶反对称阵总是奇异的det(A)=
根据性质5可以得的即奇数阶反对称矩阵则|A|=0证明|A|=|A'|=|-A|=-|A|,所以|A|=0再问:全过程就是这些吗?再答:人家数学论文就是这样写的或者参考之前别人的答案|A|=|A'|=|
(A^2)^T=(A^T)^2=(-A)^2=A^2故A^2是对称的.
这个有意思!给你个证法.证明:设A是偶数阶反对称矩阵,则A=0a12...a1n-a120...a2n......-a1n-a2n...0每个数都加上k的行列式记为|A(k)|=ka12+k...a1
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
结论根本就是错的.只有1阶反对称阵肯定是幂零阵.反对称矩阵的特征值都是0或者纯虚数,只要有一个非零特征值及不会是幂零阵.举个2阶的反例01-10高阶的在后面继续补零.
选B由题目得:A'=A,B'=-B;因此选项A:(BAB)'=B'A'B'=BAB选项B:(ABA)'=A'B'A'=-ABA剩下的两个你自己分析一下吧,我得去吃饭了,别忘了(AB)'=B'A',顺序
应该说这个标准型看上去不是很舒服,最好先把它转化到M=diag{D,D,...,D,0,0,...,0}其中D=01-10这步合同变换很容易,按1,n,2,n-1,3,n-2,...的次序重排行列即可
所有实反对称矩阵的行列式都是大于等于零的.证明的话,他所有的特征值非零的话一定是纯虚数,结果显然.
设A的元素为:a(i,j),i,j=1,2,...n取:aT=(0,0...1.,0,...0)(第i个为1,其余为0)则由aT*A*a=0,可得出:a(i,i)=0i=1,2,...n.再取:aT=
(1)因为(AB-BA)'=B'A'-A'B'=-BA+AB=AB-BA,故AB-BA对称(2)(AB+BA)'=B'A'+A'B'=-BA+A(-B)=-(AB+BA)故AB+BA反对称
|A|=|A'|=|-A|=(-1)^5×|A|=-|A|,所以|A|=0
明显的.因为aij=-aji,令i=j有aii=-aii,故aii=0(i=1,2,……,n)即对角线元素都为零
不是,至少2阶的不是0x-x0行列式等于x^2在实数内的取值范围是0到无穷大再问:所有的都算上的取值可能为负么?再答:任何n阶实反对称行列式的值皆为非负数,留下你的邮箱,我发篇文章给你
...哥直接按定义证阿(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'为对称矩阵(A-A')'=A'-(A')'=A'-A=-(A-A')所以A-A'为反对称矩阵
A为3阶反对称矩阵则A的转置,即A^T=-A所以有|A^T|=|-A|又因为恒有|A^T|=|A|将两个式子连等可以得到|A|=|-A|行列式有以下性质:|kA|=k^n|A|,k为常数,n为矩阵A的
证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(