做回归分析时回归显著,但单个自变量不显著
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:58:40
很简单,用前进、后退或逐步法都行,一般用逐步法然后看整个模型是否有统计学意义,就是有回归和残差那项若有意义(P小于0.05)则继续看每个参数的P值若P值大于0.05,剔除~最后得方程模型当然还需要注意
要做的内容很多了,除了正态性、残差分布情况,还要计算多重共线性,然后得到模型,可能还要做预测我替别人做这类的数据分析蛮多的
这个可以在非线性回归中直接做,如果你不会,可以先将这些非线性模型转换成线性的再进行回归.比如第二个模型,你先将ln(8-Q)求出来,记作Y,然后再用Y=-kt进行线性回归,不知道你是否明白我的意思,这
打开Excel“工具”菜单的“加载宏”,选定“分析工具栏”,单击确定.打开“工具”菜单的“数据分析”,选定“回归”,单击确定.在y值输入区域中输入“$B$2∶$B$11”,在x值输入区域中输入“$C$
通过F检验和t检验,伴随概率一致通过,方程成立
你这里面从各个变量的t检验看显然有变量不显著,把这些变量剔除掉重新建立新的回归模型就是了,哪儿有在这种伪回归的情况下纠结方差分析是不是显著的……再问:那有无回归模型显著,但有个别变量不显著的情况,请教
方偏小,理论上是不合理的,但很难说是否可行,因为这不是检验回归方程的唯一标准,建议结合F检验和T检验来确定.
F检验是对整个方程的检验,sig.=0,说明整个回归方程是显著的.T检验是对各个系数包括常数项的检验,sig.大于0.05的话,一般认为这个系数不显著,如果题目要求对系数进行T检验的话,那是必须舍去的
以你所选取的自变量拟出的公式与实际的统计值出入比较大,建议去除相关性较小的几个自变量就有可能小于0.05.
建议将所有变量进行逐步回归,通过逐步回归结果剔除多重共线性和非显著性变量,然后再建模另外,回归后残差的各项检验有助于分析回归选取的自变量是否能解释因变量的所有信息,你可以做一下
先进性复共线性检验,如果变量之间复共线性特别大,那么进行岭回归和主成分回归,可以减少复共线性,岭回归是对变量采取了二范数约束,所以最后会压缩变量的系数,从而达到减小复共线性的目的,另外这个方法适合于p
简单来讲就是通过看各因素分析结果中的P值:在P值小于0.05时,P值越小影响越显著,当然也包括常数值.
要根据散点图来初步估计下大概是什么关系如果比较简单的不建议采用非线性回归,因为要自己构建算式的,比较有难度可以采用曲线回归,它会有一系列常用的曲线模型,你可以根据散点图大致选择几个模型然后结果会输出各
你是想调整数据呢还是想调整什么呢?线性回归时候,相关系数只是表明了各个系数之间的相关程度.但是自变量对因变量不显著的话,只能说明自变量多因变量影响不大,可以考虑换其他的跟因变量关系更加大的变量.或者在
X=[1146811141721]'Y=[2.493.303.6812.2027.0461.10108.80170.90275.50]'X=[ones(9,1),X][b,bint,r,rint,st
看来LZ应该是刚开始作统计分析啊,其实里面的数据还是比较简单的,第一行MultipleR表示R^2的值,第二行则表示R值,第三行表示调整R方,一般R^2是衡量回归方程是否显著的决定因子,但只是一方面.
刚看了一篇外文文献,其中提到了几个变量之间的相关性分析.作者用SPSS得出A与B的相关性系数约为0.09,但显著性水平大于0.05即不显著.随后继续作回归性分析(未阐明是否是多元线性)结论是BETA值
你先找到自变量和因变量,就可以直接利用SPSS中的曲线回归中logistic的模型拟合就可以了
不能拒绝二次adm项系数为0的假设所以不显著你可以看看二次回归和一次回归R方的差异如果不大说明一次v即可.再问:但是R^2很大啊。。。再答:一次和二次的R方差异是多少?再问:相差不大。。。
回归系数比较大小是通过绝对值的比较,同时应该看后面的标准化回归系数进行比较影响的大小