偏导数连续可以推出偏导数存在吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:35:01
偏导数连续可以推出偏导数存在吗
偏导数存在并且函数连续就能说明函数可微分吗?

不能,偏导数存在只是可微分的必要条件,充分条件是偏导数连续,即如果偏导数连续函数可微分.再问:我是想问“偏导数存在”加上“函数连续”呢?再答:那也不行,例如函数f(x,y)=xy/(x^2+y^2)^

多元函数:偏导数存在、可微分、连续!

1.一元函数可微分与可求导比较接近二元函数的话,你想象一张平面,在上面任何一个方向都可以求导,就接近可微分了;而偏导数存在仅仅是某几个方向可以求导2.可微分->偏导数存在可微分->连续偏导数存在(比如

偏导数存在和偏导数连续是什么关系 高数

连续就一定存在,存在不一定连续啊

二元函数偏导数连续那么该函数一定连续吗?如果仅仅是二元函数偏导数存在,那么该函数连续吗?

偏导存在未必连续,但如果能全微分也必定连续再问:那么偏导数存在,且偏导数连续,可以推出来函数连续吗?再答:偏导连续那就可以全微分了,可微了原函数自然连续了再问:一个函数偏导且连续是函数可微的充分不必要

偏导数存在且连续,可微,函数连续,偏导数存在,这四个有什么关系?

可微必定连续且偏导数存在连续未必偏导数存在,偏导数存在也未必连续连续未必可微,偏导数存在也未必可微偏导数连续是可微的充分不必要条件

多元函数连续能推出偏导数存在吗?

当然推不出来了.连一元的情形都不行(连续未必可导),多元就更不可能了.

多元函数偏导数和函数连续是什么关系?函数连续可以对出其在这点各方向偏导数存在且连续吗

楼上说的是一元函数的结论,不适用于多元函数.多元函数连续不能推出偏导数存在,反之偏导数存在也不能推出连续.偏导数存在且偏导数连续==>可微==>连续(这个连续是指没求导的函数).这个是正确的

函数连续,偏导数存在,能推出可微吗?

函数连续,偏导数存在,不能推出可微,还需要偏导连续才能推出可微但是可微必连续必可偏导再问:这些我是知道的,但我主要没想清楚能不能由偏导数的连续来推函数连续,就跟一元函数一样…再答:我主要没想清楚能不能

偏导数存在推不出f(x)连续,为什么?

多元函数的偏导数存在和连续没有一定的关系,偏导数存在不一定连续,连续不一定偏导数存在,详细的可以看看高等数学第二次关于骗到连续的知识

二元函数某点对x偏导数存在.是不是就可以说对x偏导数在该点连续?

一楼没有理解楼主想问的是什么.我来回答吧.1、偏导数连续(这个连续指的是偏导函数连续)能推出可微,这是正确的,这是书上的定理;2、偏导数存在当然不能推出偏导数连续;3、可导必连续(这个连续指的是没求导

二元函数偏导数存在且 偏导数连续,那么这个函数是不是就是连续的?为什么?

首先偏导数连续是可微的充分条件,偏导数存在是可微的必要条件,也就是说存在一些偏导数不连续的函数但仍可微,也存在一些偏导数存在的函数但不可微,而可微一定连续(连续不一定可微),所以从偏导数存在是得不出函

若函数的5阶导数存在,那前4阶导数是不是也存在呢?若5阶导连续呢,能推出前4阶都连续吗?

结论:若一个函数的n+1阶导数存在,则它的前n阶导数必然存在,且前n阶导数必然连续这一结论绝对正确函数的5阶导数存在,那前4阶导数存在,而且还是连续的

高数可导的问题当函数在一个区间可导,可以推出函数在区间连续,那当一个函数在点x1存在导数,那么是否可以推出函数的导数在点

条件不足,无法判断一个函数在点x1存在导数,在x1的去心邻域内未必可导,从而导函数未必存在,何来导数连续?即使存在导函数,也未必连续例如:f(x)=x^2sin(1/x),x≠00,x=0f(x)在x

高数二阶连续偏导数问题

这是复合函数求导问题,arcsinx求导公式的套用再问:如果是求导不应该是这样么?再答:因为是对x求导,所以y是常数,根号y是常数放在一边,你怎么把他弄到分母上了这里是考研帮忙达人团,团长为您解答,若

多元函数可微为什么不能推出偏导数存在且连续

说明一个命题不正确是不需要证明的,只需举一个反例即可,因为存在函数可微而偏导数不连续的情况,所以多元函数可微不能推出偏导数存在且连续.

偏导数存在和偏导数连续的区别

这其实是连续的一个证明问题左右极限相等,则偏导存在.但此时的极限不一定等于该点的导数值,明白吗?证明偏导数连续,则是要证明左右极限相等并且要等于该点的偏导数值.也就是说:在那点的偏导数等于左右极限这句

高数中,偏导数存在,是否能推出方向导数存在?

偏导数存在,是可导的必要条件,偏导数连续是可导的充分条件,当然这是针对可导的偏导数存在,方向导数就是存在的~

偏导数存在不一定连续多元函数,偏导数存在 函数不一定 连续为什么?(一元函数,可导一定连续,为何不能推广到多元?)

把二元函数想像成平面上的函数,则连续需要在各个方向(横的,竖的,斜的)直线上都连续;而对x的偏导数存在只说明函数限制到每条横的直线(y=a)上后作为x的一元函数可导,对y的偏导数存在只说明函数限制到每