偏导数连续可以推出偏导数存在吗
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:35:01
不能,偏导数存在只是可微分的必要条件,充分条件是偏导数连续,即如果偏导数连续函数可微分.再问:我是想问“偏导数存在”加上“函数连续”呢?再答:那也不行,例如函数f(x,y)=xy/(x^2+y^2)^
1.一元函数可微分与可求导比较接近二元函数的话,你想象一张平面,在上面任何一个方向都可以求导,就接近可微分了;而偏导数存在仅仅是某几个方向可以求导2.可微分->偏导数存在可微分->连续偏导数存在(比如
连续就一定存在,存在不一定连续啊
偏导存在未必连续,但如果能全微分也必定连续再问:那么偏导数存在,且偏导数连续,可以推出来函数连续吗?再答:偏导连续那就可以全微分了,可微了原函数自然连续了再问:一个函数偏导且连续是函数可微的充分不必要
可微必定连续且偏导数存在连续未必偏导数存在,偏导数存在也未必连续连续未必可微,偏导数存在也未必可微偏导数连续是可微的充分不必要条件
当然推不出来了.连一元的情形都不行(连续未必可导),多元就更不可能了.
楼上说的是一元函数的结论,不适用于多元函数.多元函数连续不能推出偏导数存在,反之偏导数存在也不能推出连续.偏导数存在且偏导数连续==>可微==>连续(这个连续是指没求导的函数).这个是正确的
函数连续,偏导数存在,不能推出可微,还需要偏导连续才能推出可微但是可微必连续必可偏导再问:这些我是知道的,但我主要没想清楚能不能由偏导数的连续来推函数连续,就跟一元函数一样…再答:我主要没想清楚能不能
多元函数的偏导数存在和连续没有一定的关系,偏导数存在不一定连续,连续不一定偏导数存在,详细的可以看看高等数学第二次关于骗到连续的知识
一楼没有理解楼主想问的是什么.我来回答吧.1、偏导数连续(这个连续指的是偏导函数连续)能推出可微,这是正确的,这是书上的定理;2、偏导数存在当然不能推出偏导数连续;3、可导必连续(这个连续指的是没求导
首先偏导数连续是可微的充分条件,偏导数存在是可微的必要条件,也就是说存在一些偏导数不连续的函数但仍可微,也存在一些偏导数存在的函数但不可微,而可微一定连续(连续不一定可微),所以从偏导数存在是得不出函
结论:若一个函数的n+1阶导数存在,则它的前n阶导数必然存在,且前n阶导数必然连续这一结论绝对正确函数的5阶导数存在,那前4阶导数存在,而且还是连续的
条件不足,无法判断一个函数在点x1存在导数,在x1的去心邻域内未必可导,从而导函数未必存在,何来导数连续?即使存在导函数,也未必连续例如:f(x)=x^2sin(1/x),x≠00,x=0f(x)在x
这是复合函数求导问题,arcsinx求导公式的套用再问:如果是求导不应该是这样么?再答:因为是对x求导,所以y是常数,根号y是常数放在一边,你怎么把他弄到分母上了这里是考研帮忙达人团,团长为您解答,若
说明一个命题不正确是不需要证明的,只需举一个反例即可,因为存在函数可微而偏导数不连续的情况,所以多元函数可微不能推出偏导数存在且连续.
这其实是连续的一个证明问题左右极限相等,则偏导存在.但此时的极限不一定等于该点的导数值,明白吗?证明偏导数连续,则是要证明左右极限相等并且要等于该点的偏导数值.也就是说:在那点的偏导数等于左右极限这句
偏导数存在,是可导的必要条件,偏导数连续是可导的充分条件,当然这是针对可导的偏导数存在,方向导数就是存在的~
把二元函数想像成平面上的函数,则连续需要在各个方向(横的,竖的,斜的)直线上都连续;而对x的偏导数存在只说明函数限制到每条横的直线(y=a)上后作为x的一元函数可导,对y的偏导数存在只说明函数限制到每