假设f(x)连续,g(x)可导,则d(积分a-x)f(x)g(x)dt) dx=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:46:14
f`(x)g(x)-f(x)g`(x)
g(x)=f(x)/x;x≠0=f′(0);x=0g'(x)=lim(y->0)[g(x+y)-g(x)]/yg'(0)=lim(y->0)[g(y)-g(0)]/y=lim(y->0)[f(y)/y
[f(x)/g(x)]`=[f`(x)g(x)-f(x)g`(x)]/[g(x)*g(x)]因为当a
答:f'(x)+f(x)/x>01)x>0时,上式化为:xf'(x)+f(x)>0,即是:[xf(x)]'>02)xm(0)=0g(x)=f(x)+1/x=[xf(x)+1]/x=[m(x)+1]/x
首先构造函数F(x)=f(x)+g(x)+|f(x)-g(x)|当f(x)>=g(x)时,F(x)=f(x)+g(x)+f(x)-g(x)=2f(x)当f(x)
F(x)=g(X)sin(x-a)(m》1)F(a)=g(a)(sin(a-a))^m=0下面用导数的定义做lim(x→0)[F(x+a)-F(a)]/x=lim(x→0)[g(x+a)(sinx)^
再问:为什么f(x)-f(t)
\x100\x100可以这样通俗的理解拐点,即在a点的左右f''(x)的正负发生变化的点,f''(a)可以为零或者不存在.\x100\x100f(x)只要求出二阶导数,再利用三角函数,就应该没问题了!
这个题目吧,很把f(t-x)中的x分离出来令t-x=ydt=dyt=0,y=-xt=x,y=0g(x)=∫[-x,0](x+y)^2f(y)dy=x^2∫[-x,0]f(y)dy+2x∫[-x,0]y
这是柯西中值定理.在网上搜搜就有了.高数课本上有很清晰的证明.作辅助函数F(x)=f(x)-f(b)-[f(a)-f(b)][g(x)-g(b)]/[g(a)-g(b)]显然,F(a)=F(b)=0由
首先用分部积分:∫g(x)dx=x·g(x)-∫xd[g(x)]由题意,y=g(x)为f(x)的连续的反函数,即g(x)=f(x)的逆再换元:令t=g(x)=f(x)的逆,则x=f(t)∫g(x)dx
证:假设:f(x)的原函数是F(x)g(x)的原函数是G(x)由题得:F(x)-F(a)>=G(x)-G(a)……1F(b)-F(a)=G(b)-G(a)……2要证:∫(b,a)xf(x)dx
函数f(x)=tanx,y=f(π/2-x)sinx=tan(π/2-x)sinx=[sin(π/2-x)/cos(π/2-x)]*sinx=cosx*sinx/sinx=cosx定义域sinx≠0,
f'(x)=lim(y->0)(f(x+y)-f(x))/yf'(a)=lim(y->0)(f(a+y)-f(a))/y=lim(y->0)(yg(a+y))/y=g(a)
函数f(x)的图像关于直线x=1对称,则:f(1-x)=f(x+1),所以f(1/3)=f(5/3),f(2/3)=f(4/3),又当x>1时,f(x)=lnx-x,则:f'(x)=1/x-1,当x>
用导数判断:g'(x)=[xf'(x)-f(x)]/x^2要证g(x)单调增,则需证g'(x)>0(00;所以h'(x)=xf''(x)>0;得出h(x)在0到正无穷上单调增,所以h(x)>h(0)=
f'(x)=g'[xg^2(x)]*[xg^2(x)]'=g'[xg^2(x)]*{x'*g^2(x)+x*[g^2(x)]'}=g'[xg^2(x)]*{g^2(x)+x*2g(x)*[g(x)]'
不正确例如:(1)f(x)=0在x=0处可导,g(x)=|x|在x=0处不可导,f(x)*g(x)=0在x=0处可导(2)f(x)=1在x=0处可导,g(x)=|x|在x=0处不可导,f(x)*g(x
(1)f(x)=xsin(1/x),当x不等于0lim(x->0)f(x)=lim(x->0)(xsin(1/x))=0=f(0),连续f'(0)=lim(x->0)[f(x)-f(0)]/x=lim