2016连云港 如图,在三角形abc中,角c等于150

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:58:12
2016连云港 如图,在三角形abc中,角c等于150
(2007•连云港)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C在坐标轴上,OA=6

(1)在矩形OABC中,因为OA=60,OC=80,所以OB=AC=602+802=100.因为PT⊥OB,所以Rt△OPT∽Rt△OBC.因为PTBC=OPOB,即PT60=5t100,所以y=PT

相似三角形:如图,在等腰RT三角形ABC中,AB=1,∠A=90°

因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A

如图,在三角形ABC中,

http://i159.photobucket.com/albums/t145/l421013/MATH2/CM5.png

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图三角形ABC全等三角形A'B'C',

50.因为他俩全等,所以∠ABC=∠A'B'C,CB=CB',所以三角形BCB'为等腰三角形所以∠BCB'=180°-130°=50°.又因为ACA'、BCB',分别为A'CB的余角,所以他们相等,所

如图在三角形abc中 

再答:看得懂吗?再问:嗯,我还有一道再答:稍等再答:再答:再答:请注意我标的角1的位置再问:给了

一道初中三角形数学题:如图,在三角形ABC.

1.△ABD与△ACE相似.△ABC与△ADE因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=A

如图,已知a是三角形bcd

过M点在ABC作BC的平行线,交AB于E,交AC于F,连接DE,DF,所得平面DEF即为所求

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

数学如图在RT三角形ABC

过C作CD⊥AB,D为垂足∵MN⊥AB∴CD//MN∴∠DCN=∠N∵CN平分∠ACB∴∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD∵CM是斜边AB上的中线∴AM=BM=CM∴∠A=∠A

如图,在三角形ABC与三角形DEF中,∠A=∠D,AB/DE=AC/DF,求证:三角形ABC相似于三角形DEF

两边对应成比例,夹角相等,已经相似了.再问:按其他证明方法证明再答:还有一种方法就是把△DEF搬到△ABC上进行证明了,∵∠A=∠D,把△DEF搬到△ABC上,使A与∠D重合,且DE放在AB上,自然D

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,三角形ABC和三角形CDE都是等边三角形,且点A,C,E在一条直线上

1):证明△ADC与△BCE全等,所以AM=BN2):用相同的方法证明三角形全等,因为有两个等边三角形,所以肯定有相等角为60°,所以可以证明三角形MNC是等边三角形

如图三角形ABC和点D,在图中画出三角形A'B'C',使三角形A'B'C'与三角形ABC关于D点中

回答有采纳不?再问:要采纳,必须画图再答:再答:连接起来,取相等线段再答:采纳,采纳!!再答:说好的采纳呢?别顽皮了,,,,

(2012•连云港三模)如图,已知点A、B在双曲线y=kx

设A的纵坐标是2a,则P、B的纵坐标是a.在y=kx中,令y=2a,解得:x=k2a,即DP=k2a.在y=kx中,令y=a,解得:x=ka,即DB=ka.则PB=ka-k2a=k2a.在直角△PAB

如图在三角形abe中角a等105度a一的垂直平分线

参考:如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是

(2012•连云港一模)如图,某天然气公司的主输气管道从A市向北偏东60°方向直线延伸,测绘员在A处测得要安装天然气的M

如图,过M作MN⊥AC交于N点,即MN最短;∵∠MAC=60°-30°=30°,又∵C处看M点为北偏西60°,即∠C=60°,∴∠AMC=90°,∴∠MAC=30°,∴MC=12AC=4000,又∵∠