-1^n-1 sin1 n绝对收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:16:31
-1^n-1 sin1 n绝对收敛
高数-判断收敛性∑(-1)^n+1*n!/2n^2(n=1,∞)是条件收敛还是绝对收敛?是发散、条件收敛还是绝对收敛?有

发散.∑|(-1)^n+1*n!/2n^2|=∑n!/2n^2,lim(n→∞)U(n+1)/Un=lim(n→∞)n^2/(n+1)=+∞,所以原级数发散.

判定级数(∞∑n-1)(-1)^n-1/ln(n+1)是否收敛?如果收敛,说明是条件收敛还是绝对收敛

首先看∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞)n/ln(1+n)=lim(n→∞)1/(1/(n+1))=lim(n→∞)n+1=∞而∑1/n发散,所以

判断级数∑(N=1,∞) (-1)^N/(N-lnN)的收敛性,是绝对收敛还是条件收敛

lim(n→∞)[1/(n-lnn)]/(1/n)=1又lim(n→∞)[1/(n-lnn)]=0u(n+1)-un

级数sin n/(n+1)收敛还是发散,如果收敛,是绝对收敛还是条件收敛,为什么?

收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c

证明∑(-1)^n㏑【(n+1)/n】(n=1,2,3.)是条件收敛还是绝对收敛

条件收敛!首先,∑㏑((n+1)/n)=Limln((2/1)(3/2)…(n+1)/n)n→∞=Limln(n+1)=∞n→∞所以不绝对收敛.又㏑((n+1)/n)∽1/n→0n→∞故由交错级数的收

判别下列级数的敛散性,请说明是绝对收敛还是条件收敛 求和(n=1到无穷)(-1)^(n-1)*n!/n^n

因为后项比前项的绝对值=[(n+1)!/(n+1)^(n+1)]/[n!/n^n]=n^n/(n+1)^n=1/(1+1/n)^n趋于1/e

证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.

证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛

请判断下面这个级数的敛散性,如果收敛,那是绝对收敛还是条件收敛? 1/n^2 + (-1)^n乘以根号n分之一

答案:条件收敛.由于求和(n=1到无穷)1/n^2收敛,求和(n=1到无穷)(-1)^(n-1)/根号(n)用Leibniz判别法知道是收敛的,因此也收敛.故原级数收敛.但通项加绝对值后|1/n^2+

判断级数∑(∞ n=2) -1^n/2^n-1的敛散性,若收敛,是绝对收敛,还是条件收敛,为什么

∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n

判断级数敛散性,是条件收敛还是绝对收敛∑(-1)^(n-1)(tan1/n^p-1/n^p)

当p1时,绝对收敛.当n足够大时,其一般项的绝对值为tan1/n^p-1/n^p(因为当x很小的时候有tanx>x),而lim(tan1/n^p-1/n^p)/(1/n^p)=0(n趋于无穷,罗比塔法

判断级数∑(n从1到∞)(-1)^n/根号(n(n+1))是否收敛 若收敛是条件收敛还是绝对收敛

条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑

∑(-1)∧n(1/ln n)绝对收敛还是条件收敛?怎么证明呀?

首先1/lnn>1/n故级数1/lnn发散又:1/lnn>1/ln(n+1)且1/lnn趋于0由莱布尼兹交错级数判定定理,级数收敛原级数条件收敛

判别级数∞∑n=1(-1)^n(1-cos1/n)是绝对收敛、条件收敛还是发散

∑(-1)^n[1-cos(1/n)]对应的正项级数∑[1-cos(1/n)]=∑2{sin[1/(2n)]}^2后者收敛,则原级数绝对收敛.

求判断无穷级数收敛性(绝对或条件收敛)∑ (-1^n) * sin(2/n)

sin(2/n)>sin(2/n+1),limsin(2/n)=0,莱布尼兹定理,收敛limsin(2/n)/(2/n)=1,∑2/n发散,条件收敛

判断级数∑(n=1)(-1)^n/(n+根号n)是绝对收敛,条件收敛还是发散

{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛