-1^n-1 sin1 n绝对收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:16:31
发散.∑|(-1)^n+1*n!/2n^2|=∑n!/2n^2,lim(n→∞)U(n+1)/Un=lim(n→∞)n^2/(n+1)=+∞,所以原级数发散.
首先看∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞)n/ln(1+n)=lim(n→∞)1/(1/(n+1))=lim(n→∞)n+1=∞而∑1/n发散,所以
lim(n→∞)[1/(n-lnn)]/(1/n)=1又lim(n→∞)[1/(n-lnn)]=0u(n+1)-un
收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c
条件收敛!首先,∑㏑((n+1)/n)=Limln((2/1)(3/2)…(n+1)/n)n→∞=Limln(n+1)=∞n→∞所以不绝对收敛.又㏑((n+1)/n)∽1/n→0n→∞故由交错级数的收
设M为{bn}的上界则|bn|
|sin(na)|
先判断是否绝对收敛,如下:
因为后项比前项的绝对值=[(n+1)!/(n+1)^(n+1)]/[n!/n^n]=n^n/(n+1)^n=1/(1+1/n)^n趋于1/e
证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛
答案:条件收敛.由于求和(n=1到无穷)1/n^2收敛,求和(n=1到无穷)(-1)^(n-1)/根号(n)用Leibniz判别法知道是收敛的,因此也收敛.故原级数收敛.但通项加绝对值后|1/n^2+
∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n
当p1时,绝对收敛.当n足够大时,其一般项的绝对值为tan1/n^p-1/n^p(因为当x很小的时候有tanx>x),而lim(tan1/n^p-1/n^p)/(1/n^p)=0(n趋于无穷,罗比塔法
条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑
首先1/lnn>1/n故级数1/lnn发散又:1/lnn>1/ln(n+1)且1/lnn趋于0由莱布尼兹交错级数判定定理,级数收敛原级数条件收敛
p>1,绝对收敛;0
应用比较审敛法,|cosnα|
∑(-1)^n[1-cos(1/n)]对应的正项级数∑[1-cos(1/n)]=∑2{sin[1/(2n)]}^2后者收敛,则原级数绝对收敛.
sin(2/n)>sin(2/n+1),limsin(2/n)=0,莱布尼兹定理,收敛limsin(2/n)/(2/n)=1,∑2/n发散,条件收敛
{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛