例4.已知,如图等边ΔABC的边长是4cm

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:48:06
例4.已知,如图等边ΔABC的边长是4cm
一道初二几何证明题.已知:如图,分别以Rt△ABC的两条直角边AB,AC为边作等边△ABE和等边△BCF,分别连结EF,

(1)、△BCE≌△BFE说理如下:∠CBE=∠CBA+∠ABE=150°∠EBF=360°-∠CBF-∠CBA-∠ABE=150°∴∠FBE=∠CBE∵BC=BFBA=BE∴△BCE≌△BFE(2)

已知,如图,等边△ABC的两个顶点,坐标为A(-4,0).B(2,0),求点C坐标;求△ABC的面积

C点的坐标有2个,第二象限和第三象限.由(-4+2)÷2=-1,|AB|=6,∴高为√(6²-3¹)=3√3.∴C1(-1,3√3),C2(-1,-3√3),S△ABC=1/2·6

如图,已知△ABC是等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边△ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

1、如图,已知等边△ABC边长为2,BD为中线,延长BC到E,使CE=CD,连结DE,求△BDE的周长?

1.∵BD为△ABC的中线∴AD=AC=1/2AC=1又∵CD=CE所以CE=1∵BE=BC+CE=2+1=3等边三角形三线合一∴由勾股定理知BD=根号(2²+1²)=根号5∵∠D

已知:如图6中,P为等边△ABC的外接圆BC弧上的一点,AP交BC于E,

这个题用相似(1)角ACB=60度,角APC=角ABC=60度,角PAC=角CAE所以三角形PAC相似与三角形CAE所以PA:AC=AC:AE,即AC^2=PA*AE,AC=AB(2)角BPE=角BC

如图1,已知等边△aBC,D为AC边上的一动点,Cd=nDA,连接线段BD,M为线段BD上一点,

相似三角形△ABD相似△MAD(两个角相等)所以BD/AD=AD/MD又M为中点-->BD=2MD代入得出AD*AD=2MD*MD△ADB中AB*AB+AD*AD-2ABADcos60=BD*BD将A

如图,已知三角形ABC中,∠a=2∠b,ab=2ac,cd是ab边上的中线,说明三角形acd是等边三

因为cd为ab中线,所以ad=bd=cd=1/2ab.又ab=2ac,所以ad=bd=cd=ac,所以三角形acd是等边三角形

已知:如图,分别以Rt△ABC的两条直角边AB,BC为边作等边△ABE和等边△BCF,分别联结EF,EC

1.△EBC≌△EBF证明:因为等边三角形ABE,CBF所以角ABE=60度,角CBF=60度,BC=BF所以角EBC=90+60=150度角EBF=360度-角CBE-角CBF=150度,角EBF=

已知:如图,分别以Rt△ABC的两条直角边AB,BC为边作等边△ABE和等边△BCF,连接EF,EC,请说明EF=EC

题目可以转换证明三角形EBF全等于三角形EBC,ABC+ABF+CBF+EBF=360,其中ABC=90,ABF=CBF=60,所以,EBF=150,又因为EBC=ABE+ABC=150,所以EBC=

已知:如图,分别以Rt△ABC的两条直角边AB、BC为边作等边△ABE和等边△BCF,分别连接EF,EC.

1、△CBE全等于△FBE证明:∵Rt△ABC∴∠CBA=90∵等边△BCF∴∠CBF=60°,BC=BF∵等边△ABE∴∠ABE=60°∴∠CBE=∠CBA+∠ABE=90°+60°=150°∴∠F

如图,等边△ABC和等边△AEF的一边都在x轴上,双曲线y=k/x(k>0)边OB的中点C和AE的中点D.已知等边△OA

(1)作BM垂直x轴CN垂直x轴则OM=2ON=1BM=2根号3CN=根号3所以C(1,根号3)代入y=k/x得k=根号3所以y=根号3/x(2)作EM1,DN1垂直X轴设AN1=a,则AM1=2aE

如图,平行于BC的线段吧等边△ABC分成一个三角形和一个四边形,已知△AMN和四边形MBCN的周长相等

设AM/BC=n∵3AM=AM+BC+2BM∴2AM=AM/n+2AM*(1/n-1)2=1/n+2/n-24=3/n∴4:3这是希望杯的题目吧!

如图,已知等边△ABC的两个顶点的坐标为A(-6,0),B(4,0),则点C坐标为_____.

设C(x,y);AB中点为(-1,0)AB=10;所以C的x=-1;∴|y|=10×sin60°=5√3;∴y=±5√3;∴C(-1,±5√3)很高兴为您解答,skyhunter002为您答疑解惑如果

如图,已知点D是等边△ABC的边BC延长线上的一点,∠EBC=∠DAC,CE//AB,求证:△CDE是等边三角形

∵CE//AB∴∠ECD=∠ABC=60∵∠ACB=60∴∠ACB=∠DCE∴∠BCE=∠ACDBC=AC∠EBC=∠ACD∴△BCE≌△ACDCD=CE∵∠ECD=60∴△DCE是等边三角形

已知:如图,AB、BE、CF是等边△ABC的角平分线.求证:△DEF是等边三角形.

∵AB、BE、CF是等边△ABC的角平分线.∴AD⊥BC,BE⊥AC,CF⊥AB,D、E、F是等边三角形三边的中点,∴EF∥BC,DE∥AB,DF∥AC,∴△AEF、△BDF、△DEC是等边三角形,∴

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB

在Rt△ABC中,∠BAC=30°∴∠ABC=60°∵△ACD、△ABE是等边△∴∠DAC=∠BAE=∠FAE=60°AB=AEAC=AD∵EF⊥AB,即∠AFE=90°∴△AEF是直角三角形在Rt△

已知如图在等边△ABC和等边△ADE中.AD是BC边上的中线,DE交AC于点F.求证AC⊥DE.DF=EF

由等边、中线据三线合一得AD平分角BAC,因为等边,角BAC为60度,所以角DAC为30度,因为等边,角ADE为60度,180度减它们得角AFD为90度,所以AC⊥DE,所以AE是△ADE的高,因为全

已知:如图,在Rt△ABC中,∠C=90°,∠A=30°,分别以AB、AC为边在△ABC的外侧作等边△ABE和等边△AC

证明:过E作EG丄AB于G,如图,∵△ABE为等边三角形,∴BG=12AB,∠ABE=∠BEA=∠EAB=60°,AE=AB,∵Rt△ABC中,∠C=90°,∠A=30°,∴BC=12AB,∴AG=B

如图,已知⊙O是边长为2的等边△ABC的内切圆,则⊙O的面积为 ___ .

设BC切⊙O于点D,连接OC、OD;∵CA、CB都与⊙O相切,∴∠OCD=∠OCA=30°;Rt△OCD中,CD=12BC=1,∠OCD=30°;∴OD=CD•tan30°=33;∴S⊙O=π(OD)

1如图,已知ΔABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边ΔADE .

(1)△ACD≌△CBF证:∵△ABC为等边三角形∴AC=BC∠ACD=∠B=60°∵CD=BF∴△ACD≌△CBF(SAS)(2)四边形CDEF为平行四边形∵△ACD≌△CBF∴∠DAC=∠BCF,