例2,如图,在正方形abc中

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:10:13
例2,如图,在正方形abc中
如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图,在4*4的正方形网格中,三角形ABC和三角形DEF的顶点都在边长为1的小正方形的顶点上.(

因为AB=2,EF=1AC=√16+4=2√5DF=√4+1=√5BC=2√2DE=√2则AB:EF=AC:DF=BC:DE再答:则两个三角形相似

如图在三角形ABC中AB=BC=2角B=45度四边形DEFG是三角形ABC的内接正方形

A在BC边上的高为AB*sinB=根号2定义为h设正方形边长为a则由于FG平行于CB有△AGF相似于△ABC相似比为高的比即为(h-a):h也为GF:BC=a:2从而有(根号2-a):(根号2)=a:

如图,在9×9的正方形网格中每个小正方形的边长都是1,有三角形abc的顶点在小正方形的顶点上,求

没有图出来.再问:点击[http://pinyin.cn/1qS1yQN8ogN]查看这张图片。[访问验证码是:424588请妥善保管]再答:你可以先求出三角形ABC的面积,可以用正方形总面积减去周围

如图,P为正方形ABCD内一点,在△ABC中,PA=1,PB=2,∠APB=135°,求PC的长.

将△APB绕B顺时针旋转90度,得△CQB,则QP=2根号2,∠CQP=90度CQ=1,所以PC=3

如图,已知在△ABC中,角ACB=90°,四边形DECF是正方形

设正方形的边长为X三角形AED与三角形DFB下似,有FB:ED=DF:AE即:(8-X):X=X:(24-X),解得X=6又因为三角形AEG与三角形ACF相似,有AE:AC=EG:CF即(24-6):

如图在Pt三角形abc中,角abc等于九十度分别以abac为边向三角形abc外作正方形ABDE 和

延长AH于I,使IG平行于BC∵IG平行于BC,∠ABC=90°∴∠GIA=90°∵∠IAG+∠BAC=90°,∠BAC+∠ACB=90°∴∠IAG=∠ACB在△ABC与△GIA中∵AC=AG,∠GI

如图,在4×3的正方形网格中,三角形ABC 与 三角形DEC 的顶点都在边长为1的小正方形的顶点上.

首先,为了好理解,先把图中的一些要用到的点标柱上符号:直线AB与C点所在的直线的交点为J点,直线DE与直线JC的交点为L点,水平方向上C所在的直线从左至右的点依次标注为H、G、F点.假设每一个小正方形

如图,网格中每个小正方形的边长均为1,△ABC的顶点在格点上,在边的左侧分别以△ABC

图呢没图再问:画的有点差 拜托一下再答:ֱ���������Ӱ=ֱ������ε����  ������˼�������Щ����ƽ��

如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?

设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2

如图,在三角形ABC中,∠ACB=90°,四边形ABDE,AGFC都是正方形,求证:BG=EC

证明:∵四边形ABDE,AGFC都是正方形∴AE=AB,AC=AG,∠EAB=∠CAG=90°∴∠EAB-∠CAB=∠CAG-∠CAB即∠EAC=∠BAG∴△EAC≌△BAG(SAS)∴BG=EC

如图,在9×9的正方形网格中每个小正方形的边长都是1,有三角形abc的顶点在小正方形的顶点上,求三角形abc的边ab的高

用面积法S(正方形)=9S(△ABC)=S(正方形)-S(△ABC外三个三角形)=9-[(3*2)/2+(3*2)/2+(1*1)/2]=5/2又S(△ABC)=(AB*CD)/2由勾股定理AB=√(

如图,在2×4的正方形方格中,有格点△ABC(我们把顶点在正方形的顶点上的三角形叫做格点三角形),则与△ABC相似但不全

有12个,根2倍的有8个,2倍的有4个再问:不对,我输入了,是错的再答:恩,错了,一共20个,根2倍的有16个,2倍的有4个

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.

(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)由AC=4,BC=5,AB=3.∴AC2+AB2

如图,在2×4的正方形方格中,有格点△ABC(我们把顶点在正方形的顶点上的三角形叫做格点三角形),则与△ABC相似但不全

∵三角形的三边长为:AB=1,BC=2,AC=5∵在2×4的正方形方格中最大的线段为25∴可将三角形扩大2倍,这样的三角形有16个,扩大2倍,这样的三角形有4个.∴共有20个.

如图,在正方形网格中,sin∠ABC=_____

用面积做.设小正方形的边长为1△ABC的面积=3×2÷2=3=BC×BC边上的高÷2∵BC=根号5∴BC边上的高=6÷(根号5)∴sin∠ABC=30/根号10

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG