作已知圆心O的内接正八边形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:25:05
1在圆上作两条弦,再作这两条弦的中垂线,两条中垂线的交点即为圆心2在圆上作两条弦,且互相垂直,且过圆上同一点,连接两条弦的另一端点,这条线的中点即为圆心
连接OC..∵点C在⊙O上,OA=OC,.∴∠OCA=∠OAC..∵CD⊥PA,.∴∠CDA=90°,则∠CAD+∠DCA=90°..∵AC平分∠PAE,.∴∠DAC=∠CAO..∴∠DCO=∠DCA
1.正_____8___边形的边.2.半径长是____1____3.B的坐标(8,0)(-6,0)4.面积0.25
2√2R∧2再问:有没有证明步骤再答:每个圆心角对应45度,利用1/2正弦乘以R的平方
连接AO,设圆O半径为R∵O到AB,AC的距离相等∴AO平分∠BAC,AO⊥BC根据勾股定理AO=8∴S△ABC=1/2*12*8=48∵S△ABO=S△ACO=1/2AB*R=5R∴48=2*5R∴
AC,BC边上的切点D,E连接点0,则OD垂直AC,OE垂直BC,OD=OE=r所以OD/BC=AD/ACBC=a、AC=b代入OD/BC=AD/AC得:r/a=(b-r)/b解得:r=ab/(a+b
连结OP,做线段OP的垂直平分线:分别由O,P做两个半径相同的圆,相交于两点,连结这两个交点即成.则垂直平分线与∠AOB的边的交点就是圆心,然后以圆心到O的距离为半径做圆即可.
过点O作OE⊥AB于E∵正方形ABCD边长为1∴AC=BD=√2∴AO=BO=√2/2∵OE⊥AB∴OE∥BC∴OE/BC=AO/AC=1/2∴OE=1/2∴当R=1/4时,圆O与AB相离当R=1/2
半径为r,弦长为r,所以圆心与弦的两个端点构成等边三角形.圆心到弦的距离为(√3/2)r.若半径为1,那么2分之根号3为半径的圆与这条弦相切;若半径大于1,则所画圆与弦相离;若半径小于1,则所画圆与弦
再问:里面的sin是什么意思?再答:角的正弦值,直角三角形ABC中,sin∠A就表示∠A的对边与斜边的比值再问:也许是我有点苛刻。可不可以用“直线和圆的位置关系”或者是之前的知识点解答一下啊?非常感谢
连接切点F,G,连接OA,OE设半径为r易证四边形AGBF为正方形AO=根号2r=1-r(1-r就是扇形半径-OE就等于AO)r=根号2-1周长=2πr=2*(根号2-1)*π再问:画个图好么同学?再
过⊙o圆心作AB、AD垂线设⊙o的半径为x则x^2+x^2=(1-x)^2x^2+2x-1=0x=-1+根号2⊙o的周长=2π*(根号2-1)
解∵OB=OH=√2容易知道∠BOH=90°∴BH=2设BHOA的交点是M∴BM=1∴MA=√2-1∴AB的平方=BMF方+MA方=1+(√2-1)方=4-2√2∴AB=√(4-2√2)答1略
正八边形ABCDEFGH的内切圆半径为R,正八边形的面积=8R²tan22.5º=[8/(√2+1)]R²≈3.314R²正八边形ABCDEFGH的外接圆半径为
(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAE=∠BCK,∵BK⊥AC,DH∥KB,∴∠BKC=∠AED=90°,∴△BKC≌△ADE,∴AE=CK;(2)∵AB=a,AD=
1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边.2一个圆半径R=4,圆心距为3,
1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边再问:为什么剩下15度再答:60-
因为要想使之成为正八边型,那么截去的三角形一定为等边直角三角形设截去的等边直角三角形直角边长为X,那么正八边型的边长为X√2又因为正方形边长-2X=正八边型边长所以1-2X=X√2解:X=(2-√2)