,如图,bc与cd重合,角abc=角cde=90度,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:21:26
(1)证明:过C点作CH∥BD,交AB的延长线于点H;连接AC,交EF于点K,则AK=CK.∵AB∥CD,∴BH=CD,BD=CH.∵AD=BC,∴AC=BD=CH.∵CE⊥AB,∴AE=EH.∴EK
(1)证明:过C点作CH∥BD,交AB的延长线于点H;连接AC,交EF于点K,则AK=CK.∵AB∥CD,∴BH=CD,BD=CH.∵AD=BC,∴AC=BD=CH.∵CE⊥AB,∴AE=EH.∴EK
连接DEB.D两点关于EF对称BE=DE∠DBC=45°=∠BDE=45°∠DEB=90°四边形ABCD为等腰梯形,AD//BCEC=(1/2)(BC-AD)=3BE=BC-EC=8-3=5EC:DE
1、D为中点时S△ADE=S△DEC(同底,等高)S△ADC=S△DBC(底边等长,同高)得到S△DEC=1/4S△ABC,即S1:S=1:42、面积比等于高的比×底边的比S1:S=(DE:BC)*(
2根号3,打字不易,如满意,望采纳.再问:理由
(1)证明:过C点作CH∥BD,交AB的延长线于点H;连接AC,交EF于点K,则AK=CK.∵AB∥CD∴BH=CD、BD=CH∵AD=BC∴AC=BD=CH∵CE⊥AB∴AE=EH∴EK是△AHC的
⑴设弧CAD为劣弧.∵AB⊥CD,∴∠OBC=∠OBD,∵OB=OC=OD,∴∠OCB=∠OBC=∠ODB=∠OBD,∵∠P+∠CBD=180°(圆内接四边形对角互补),而∠COB+∠COB+∠OCB
过A延长CA至H,使AH=AC.因为∠ACB=∠ECD.且HA=AC=BA所以∠HBC=90°=∠CED,所以△HBC相似于△DEC.所以HC:CD=BC:EC.又因为HC=2AC,所以2AC:CD=
不对吧,DE怎么能垂直AC啊
1,AB‖CD,则∠BDC=∠ABD=∠C∠EPD+∠BPE+∠BPC=∠BCP+∠CBP+∠BPC=180度,又因为∠BPE=∠C,所以∠EPD=∠CBP两角相等证相似2,由相似得4/(6-X)=X
1)因为AD的垂直平分线,分别与边AB、AC相交于点E、F所以AE=ED,所以△BDE的周长=BE+DE+BD=BE+AE+BD=AB+BD=x+4,同理△CDF的周长=DF+FC+CD=AF+FC+
证明:(1)∵CD绕C点逆时针方向旋转90°至CE,∴CE=CD,∠ECD=90°,而∠BCA=90°,AC=BC,∴∠ECB=∠DCA,∴△ECB≌△DCA,∴∠EBC=∠A;(2)当D点为AB的中
(1)∵ABCD为矩形,AF⊥AE,AB⊥CF∴AE^2=AD^2+DE^2=9+x^2AF^2=AB^2+BF^2=16+y^2∵AE^2+AF^2=EF^2=CE^2+CF^2∴9+x^2+16+
因为CD和AB是垂直的,AB是直径平分CD所以2∠COB=∠CPB,2∠DPB=∠DOB因为弧BD=弧CB,所以∠COB=∠DOB因为2∠CPB=2∠BPD=∠COB所以∠CPD=∠COB∠CP’D+
∵EF是点B、D的对称轴,∴△BFE≌△DFE,∴DE=BE.∵在△BDE中,DE=BE,∠DBE=45°,∴∠BDE=∠DBE=45°.∴∠DEB=90°,∴DE⊥BC.在等腰梯形ABCD中,AD=
证明:(1)DE为x,则DM=1,EM=EA=2-x,在Rt△DEM中,∠D=90°,∴DE2+DM2=EM2x2+12=(2-x)2x=34,∴EM=54.(2)设正方形的边长为2,由(1)知,DE
(1)证明:∵AB‖CD∠ABD=∠C∴∠C=∠BDP∵∠BPE=∠C=∠BDP∠BPC+∠BPE+∠EPD=∠EPD+∠PED+∠EDC=180度∴∠DEP=∠BPC(2)∵∠BPE=∠C=∠BDP
∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠A=∠B=∠C=∠D=90°.∵四边形ABEF与四边形A′B′EF关于EF对称,∴BE=B′E.∵点B′为CD的中点,∴B′C=DB′=12
∵AB是圆O的直径,弦CD⊥AB∴弧AC=弧AD∴∠APC=∠APD
你不给图,大家还可以画出来,但是你不给问题,大家怎么回答呀