,前2n项收敛,证明前n项收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:08:54
俺来回答一下,马上拍照再答:
设an=1/n.∵(1)an=1/n>1/(n+1)=an+1,(2)an-->0(n-->∞),∴根据莱布尼茨判别法知,交错级数∑(-1)^n/n收敛.
由于∑u²收敛,∑1/n发散,因此存在N,当n>N时,有u²
利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p
你好!lim(n→+∞)Un^(1/n)=lim(n→+∞)n^(1/n)/lnn=lim(n→+∞)1/lnn=0所以原级数收敛
1/2^(n+(-1)^n)
证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.
你有问题也可以在这里向我提问:
limn->无限n^n/(n!)^2=limn->无限Π(i=1→n)[n/(i²)]=limn->无限e^ln[Π(i=1→n)n/(i²)]=limn->无限e^Σ(i=1→n
只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^
考虑级数n^n/(n!)^2后项比前项=[(n+1)^(n+1)/(n+1)!^2]/[n^n/(n!)^2]=[(1+1/n)^n]/(1+n)趋于0
an^2收敛说明,an^2有界,就是说存在M>0,使得an^2
1.Convergesabsolutely2.Convergesabsolutely3.Diverges4.Convergesconditionally5.Convergesabsolutely6.D
用后项比前项:因{2^(n+1)(n+1)!/(n+1)^(n+1)}/{2^n(n)!/(n)^n=2/(1+1/n)^n趋于2/e
a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)
级数1/(n^2)是收敛的而(n+3)/(n^3)=n/(n^3)+3/(n^3)=1/(n^2)+3/(n^3)把上面级数分成两项:1/(n^2)和3/(n^3),那么1/(n^2)是收敛的,而3/
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/
级数∑1/n^2与∑f(n)^2收敛所以∑[f(n)^2+1/n^2]/2收敛因为f(n)/n=根号(f(n)^2/n^2)