以圆o的弦ab为边作等边三角形,d是圆o上一点,且弧bd=弧ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:30:29
以圆o的弦ab为边作等边三角形,d是圆o上一点,且弧bd=弧ab
如图,以圆o的直径BC为一边作等边三角形ABC,AB,AC交圆O于D,E两点,试证明BD,DE,

连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC

在三角形ABC中,分别以AB、AC为边作等边三角形ABE、ACD,BD与CE相交于点O

EC=BD理由如下:∵△ABE和△ACD都是等边三角形∴AE=AB,AD=AC∠EAB=∠DAC=60°.∵AE=ABAC=AD∠EAC=∠EAB+∠BAC=60+∠BAC=∠DAC+∠BAC=∠BA

如下图,△ABC为等边三角形,D.F分别为BC,AB,上的一点,且CD=BF,以AD为边作等边三角形ADE.

(1)△ACD≌△CBF证:∵△ABC为等边三角形∴AC=BC∠ACD=∠B=60°∵CD=BF∴△ACD≌△CBF(SAS)(2)四边形CDEF为平行四边形∵△ACD≌△CBF∴∠DAC=∠BCF,

如图,△ABC为等边三角形,D.F分别是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE

1、在△ACD和△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2、1)四边形CDEF为平行四边形,理由如下设AB与ED交于G∵△ABC为正三角形∴AC=BC,∠B=∠A

以锐角三角形ABC的边AC,BC,AB向外作等边三角形ACD,等边三角形BCE,等边三角形ABF,连接DF,EF.求证:

证明:∵△ACD和△ABF是等边三角形∴AD=AC,AF=AB,∠DAC=∠FAB=60°∴∠DAC-∠FAC=∠FAB-∠FAC即∠DAF=∠CAB∴△DAF≌△CAB(SAS)∴DF=BC∵△BC

如图,以△ABC的边AB、AC为边作等边三角形ABD和等边三角形ACE,以AD、AE为边作平行四边形ADFE.

①若四边形ADFE为矩形时,∠BAC=360-2x60-90=150度.②若平行四边形ADFE不存在,则D,A,E在一条直线上,∠BAC=180-2x60=60度③若平行四边形ADFE是菱形,则AD=

以圆O的直径BC为一边作等边三角形ABC,AB、AC交圆O于D、E两点.试猜测线段BD、DE、EC相等吗?

太简单了啊!连接OD,OE,由等边三角形OBD得BD=R,由等边三角形OEC得EC=R,由等边三角形ODE得DE=R,所以三者相等!(根据角度判断等边三角形)

如图,在△ABC中,分别以AB,AC为边作等边三角形ABE,ACD,BD与CE相交与点O

1、 还要添加条件 AB=BC;是的;∵△ABE和△ACD都是等边三角形,∴∠BAE=∠CAD=60°∴∠EAC=∠BAD=∠BAC+60°又∵AB=AE,  

如图,在△ABC中,分别以AB,AC为边向外作等边三角形ABE,ACD,BD与CE相交于点O

(1)EC=BD证明:因为△ABE和△ACD均为等边三角形,且角EAB=角CAD=60°所以AD=AC,AB=AE.角EAC=角BAD=60°+角BAC,所以△EAC和△BAD全等,所以EC=BD(2

如图,三角形ABC为等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

如图,△ABC为等边三角形,D,F分别为BC,AB上的一点,且CD=BF,以AD为边作等边三角形ADE

证明:连结BE.因为三角形ABC和三角形AED都是等边三角形,所以AB=AC,AE=AD,角EAD=角BAC=60度,角ACB=60度,角ABC=60度,所以角EAB=角DAC,所以三角形EAB全等于

△ABC为等边三角形,D、F分别是BC、AB上的一点,且CD=BF,以AD为边作等边三角形ADE.

(1)证:AC=CB∠ACD=∠CBF=60°CD=BF根据边角边定理.就全等了(2)AD=DE由①问得AD=CF∴FC=DE四边形CDEF为平行四边形且对角线还相等那么CDEF只能是矩形∴△BDF为

如图点C是AB上的一点,分别以AC,CB为边,在AB同侧作等边三角形ACD和△BCE.若AE与BD交与O点,求∠AOD的

还是做个比较特例的图吧~假设C是AB中点~于是你会发现~∵AC=BC=AD且∠DAC=60°∴∠ADO=90°∠DBA=30°同理∠EAB=30°∴∠ADO=30°∴∠AOD=60°这个方法不是很严谨

如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O,连接OA.

(1)证明:∵△ABD和△ACE都是等边三角形,∴AB=AD,AE=AC,∠BAD=∠BDA=∠DBA=∠CAE=60°,∴∠BAC+∠CAE=∠BAC+∠BAD,即∠BAE=∠DAC.在△ABE和△

如图,在三角形abc中,分别以ab ac为边作等边三角形abe,等边三角形acd,bd与ce相交于点o

证明:∵ΔABE与ΔACD是等边三角形,∴AE=AB,AC=AD,∠AB=∠CAD=60°,∴∠EAB+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴ΔAEC≌ΔABD.再问:第二部那是角什么