以三角形abc的两边ab ac为边 向三角形外作正方形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:09:59
以三角形abc的两边ab ac为边 向三角形外作正方形
三角形ABC中,已知两边之和为4,它们的夹角为60度,求这个三角形的最小周长.

因为a+b已经固定了,要求周长最小,则只需求c边最小值即可a+b=4,C=60,由余弦定理c^2=a^2+b^2-2abcos60=a^2+b^2-ab≥2ab-ab=ab,且仅当a=b=2时等式成立

如图在Pt三角形abc中,角abc等于九十度分别以abac为边向三角形abc外作正方形ABDE 和

延长AH于I,使IG平行于BC∵IG平行于BC,∠ABC=90°∴∠GIA=90°∵∠IAG+∠BAC=90°,∠BAC+∠ACB=90°∴∠IAG=∠ACB在△ABC与△GIA中∵AC=AG,∠GI

如图,分别以已知三角形abc的两边ab,ac为边向外作等边三角形abd和等边三角形ace,dc与be

图呢再问:画个呗再答:那算了再问:。。。。再问:我拍不了照,拜托啊再问:再问:在么再答:你们老师有说过相交的两条线后面是什么么再问:?再答:再答:dc再答:再答:感觉的不好再补充再答:不会再答:角度是

已知:如图所示,以已知三角形ABC的两边AB、AC为边向外做等边三角形三角形ABD和三角形ACE,DC、BE相交于点O

∵△ABD和△ACE是等边三角形∴AD=AB,AC=AE∠DAB=∠CAE=60°则∠DAC=∠DAB+∠BAC=60°+∠BAC=∠CAE+∠BAC=∠BAE在△DAC和△BAE中AD=AB,∠DA

如图分别以ABAC为腰在三角形ABC的形外作两个等腰直角三角形三角形ABD和ACE

BE=DC且BE⊥DC∵∠BAD=∠CAE=90°∴∠BAD+∠BAC=∠CAE+∠BAC即∠DAC=∠BAE又∵AD=ABAC=AE∴△DAC≌△BAE∴BE=CD∠DCA=∠BEA∵∠CAE=90

证明三点共线分别以三角形ABC的两边AB、AC为边向型外作正方形ABDE和ACFG,再以BC为斜边向三角形ABC的同侧作

过D,M,F向BC作垂线垂足为P,Q,T则只需证DP+FQ=2MT=BC再过A作BC垂线垂足是H易知三角形DPB≌BHA,AHC≌CQF所以DP+FQ=BH+CH=BC

如图一已知三角形abc以abac为边向三角形abc外做等边三角形abd和等边三角形ace

1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,

以三角形ABC的两边AB、AC为腰分别向外作等腰直角三角形ABD和等腰直角三角形ACE

1、∵M是BC的中点,延长AM到F,使AF=2AM,连接BF,由AF与BC互相平分易证△BMF≌△CMA,得BF=AC,∠MBF=∠MCA,随之BF∥AC,∠ABF=180°-∠BAC;∵∠BAD=∠

以三角形ABC的AB和AC两边为边,做等腰直角三角形ABD和ACE,求证BE=CD,BE垂直于CD

三角形ADC全等于三角形ABE(AD=AB,AC=AE,∠DAC=∠BAE),所以BE=CD所以∠CDA=∠EBA,且∠ADB+∠DBA=90°,所以∠CDB+∠DBE=90°,即∠DOB=90°(记

如图,分别以三角形ABD的两边AB、AD为直角边向两侧做两个等腰直角三角形,:三角形ABC和三角形ADE,连接CD、BE

由题意可得AC=ABAE=AD∠ABC=∠DAE(直角三角形的两个直角)所以∠ABC+∠DAB=∠DAE+∠DAB因为AC=AB∠DAC=∠EABAE=AD(三角形全等SAS)所以可得△DAC≌△EA

在三角形ABC中B(-6.0)C(6.0)直线ABAC的斜率为9/4则顶点A的轨迹

A(x,y)kAB=y/(x+6)kAC=y/(x-6)kAB*kAC=9/4y/(x+6)*y/(x-6)=9/44y^2=9(x^2-36)9x^2-4y^2=9*36x^2/36-y^2/81=

如图三角形ABC中,三角形ABC为锐角三角形边ABAC的垂直平分线交与点O连接OBOC求证∠BOC=2∠A

证明:连接并延长AO交BC于点D,记∠BAO为∠1,∠CAO为∠2,∠BOD为∠3,∠COD为∠4则:∠3=∠1+∠ABO∠4=∠2+∠CAO∵AO=BO=CO∴∠1=∠ABO∠2=∠CAO∴∠3=∠

如图,三角形ABC是正三角形,三角形BDC是顶角角BDC为120度的等腰三角形,以D为顶点作一个60度角,角的两边交AB

(1)设AB=AC=BC=a,作DE⊥BC交BC于E,则E在AD上,AD平分∠BAC和∠BDCDE=(a/2)*√3/3=a√3/6BD=DC=a√3/3∠BDM+∠MDA=60°=∠MDA+∠ADN

以三角形ABC的两边AB,AC为边向外作正方形ACDE,正方形ABGF,M为BC的中点,求证AM垂直EF

Proof:过M作MP//AC,交AB于P,延长MA交FE于Q,那么:MP/AE=AP/AF=1/2;而角FAE+角BAC=180且角BAC+角APM=180,所以角FAE=角APM;所以三角形APM

以三角形ABC的两边AB,AC为边向外作正方形ACDE,正方形ABGF,M为BC的中点.证明AM垂直

方法一:过M作MP//AC,交AB于P,延长MA交FE于Q,那么:MP/AE=AP/AF=1/2;而角FAE+角BAC=180且角BAC+角APM=180,所以角FAE=角APM;所以三角形APM相似