以rt三角形abc的ac为直径作圆o交斜边于点e,连接eo并延长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:19:02
也是用勾股定理再问:嗯再答:等一等,我写过程给你再问:嗯嗯再答: 再答:望采纳😊
显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.
由勾股定理知,AB平方=AC平方+BC平方=12平方+5平方=169.以AB为直径的半圆面积是:169派/8.
可能楼上几位都忽视了“半圆”!S1+S2=π(AC/2)²/2+π(BC/2)²/2=π(AC²+BC²)/8=πAB²/8=2π
阴影部分面积=大、小半圆面积之和-Rt△ABC面积1/2π(3/2平方+4/2平方)-3×4÷2=15.8125
因为,三角形ABC是Rt三角形,所以,AB²=AC²+BC²=5cm.连接CD,又因为角ADC为圆O的直径(AC)所对的圆周角,所以角ADC=90°.所以,三角形ADC与
首先证明EF为圆O的切线连接OE,角EHF=FEF=DHOODH=OEHODH+OHD=90OEF=OEH+HEF=90故EF为圆O切线连接OG三角形CGO全等于EGOGC=GE角B+CAB=90°角
解(1)证明:连接OD,OE,因为E为BC的中点,O为AB的中点所以OE平行与AC,所以∠EOB=∠BAC又∠DOE=∠ADO=∠BAC所以∠EOB=∠DOE在三角形DOE和三角形EOB中,DO=BO
证明:连接OD,OE∵AB是直径∴∠ADB=∠CDB=90°∵E是BC的中点∴ED=EB∵OB=OD,OE=OE∴△ODE≌△OBE∴∠ODE=∠OBE=90°∴DE是⊙O的切线
∵∠B=90°,BD为直径,∴BC是⊙O的切线,∵AC切⊙O于E,∴CE=BC=6,连接OE,则OE⊥AC,∵∠AEO=∠B=90°,∠A=∠A,∴ΔAEO∽ΔABC,∴OE/BC=AE/AB,3/6
三角形为直角三角形AC=4,BC=3根据勾股定理AB=5又因为以斜边ab为直径作半圆直径为AB=5所以半圆面积S=(1/2)πr^2=(1/2)π×(5/2)^2=25π/8
AB为直径的圆O,角BAC=90°->AE是圆O的切线切线DE交AC于E->角DAC=角ADE以AB为直径的圆O交BC于点D->角ADC=90度->DE=1/2AC
勾股定理会算BC长度吧?BC是直径,你就是懒
连接cdcd垂直于abac*cb=cd*abcd=12/5ad^2=ac^2+dc^2ad=9/5bd=5-9/5=16/5
连接CD∵AC为⊙O直径∴∠CDA=90°(圆周角性质)即AB⊥CD由勾股定理可知:AB=5cm由面积相等可知CD=AC×BC/AB=2.4cm∴根据勾股定理,AD=1.8cm
证明:连OD、BD因为AB是直径∴∠ADB=∠BDC=90°E为BC边中点∴DE=BE(斜边上的中线等于斜边的一半)∴∠EDB=∠EBDOD=OB∴∠ODB=∠OBD∴∠ODB+∠EDB=∠OBD+∠
由于是直角三角形并且已知两边长,并且角C为90°可以得到AB=13.13²=12²+5².那么圆的直径为13,半径为6.5.半圆的面积为π×6.5²÷2=66.
S(阴影)=1/2*π*(1/2AC)^2+1/2*π(1/2BC)^2+S(三角形ABC)-1/2*π*(1/2AB)^2=1/8*π*(AC^2+BC^2-AB^2)+S(三角形ABC)而AC^2