以BC为圆心的两个半圆的直径都是2,求阴影部分面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:35:59
以BC为圆心的两个半圆的直径都是2,求阴影部分面积
如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为CF的中点,连接BE交AC于点M,AD为△ABC的角

(1)证明:连接EC,∵AD⊥BE于H,∠1=∠2,∴∠3=∠4(1分)∵∠4=∠5,∴∠4=∠5=∠3,(2分)又∵E为CF的中点,∴EF=CE,∴∠6=∠7,(3分),∵BC是直径,∴∠E=90°

如图,已知三角形ABC,以BC为直径,O为圆心的半圆脚AC于点F,点E位

郭敦顒回答:应是已知直角三角形ABC,以BC为直径,O为圆心的半圆交AC于点F,AB⊥BC,AB=3,BC=4,AD平分∠BAC,DD在BC上,…解答为什么AB/BD=AC/CD?作DP⊥AC,∵AD

初三圆判断题判断题.圆心相同的两个圆叫做同心圆以O为圆心作弧半圆是直径和直径所对的弧组成的的图形更正下哦,

1、圆心相同的两个圆叫做同心圆x位于同一平面内吧2、以O为圆心作弧x没有说半径,是错的吧3、半圆是直径和直径所对的弧组成的的图形o这个不怎么确定的说,是对的吧···

如图,在直径是10厘米的半圆内,分别以三条半径的中心为圆心,分别画一个小圆和两个半圆,阴影面积?

用割补法作,则阴影面积等于半圆面积减去等腰直角三角形面积,即大圆半径等于三角形的高是:10/2=5(厘米)阴影部分的面积是:5*5*3/2-10*5/2=12.5(平方厘米)

以直角三角形ABC三边为直径分别作三个半圆,已知以AC为直径的半圆面积为s1,以BC为直径半圆面积为S2

1、依题意,可知S1=(1/4)*AC²πS2=(1/4)*BC²π则S1+S2=(1/4)*(AC²+BC²)π又AB²=AC²+BC&#

如图,已知△ABC,以BC为直径,O为圆心的半圆交AC与点F,点E为弧CF的中点

1、证明:连接CE∵直径BC∴∠BEC=90∴∠ACE+∠CME=90∵AD⊥BE∴∠CAD+∠AMB=90∵∠CME=∠ANB∴∠ACE=∠CAD∵∠ACE、∠FBE所对应圆弧都为劣弧EF∴∠ACE

如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是______厘米.(保留两位小数)

连接BE、CE,则BE=CE=BC=1(厘米),故三角形BCE为等边三角形.于是∠EBC=∠BCE=60°;于是弧BE=弧CE=3.14×2×60360≈1.047(厘米),则阴影部分周长为1.047

已知在直角三角形ABC,角C等于90度.求证:以AB为直径的半圆面积等于以AC.BC为直径的两个半圆的面积之%B

勾股定理AB^2=AC^2+BC^2(AB/2)^2=(AC/2)^2+(BC/2)^2pai*(AB/2)^2=pai*(AC/2)^2+pai*(BC/2)^2S(AB)=S(AC)+S(BC)

在Rt△ABC中,∠C=90°,分别以AB,AC,BC为边向外作半圆,求证:以斜边为直径的半圆面积等于其余两个半圆的面积

证明:设BC=a,AC=b,AB=c所求证的结论是1/2∏(c/2)²=1/2∏(a/2)²+1/2∏(b/2)²左式=1/8∏c²右式=1/2∏(a²

以B与C为圆心的两个半圆的直径都是4分米.求阴影部分的周长.

两个半圆半径相等,可知BE=BC=EC所以△EBC是等边三角形,∠EBC=∠ECB=60°所以弧BE=弧CE=半圆弧长*1/3所以阴影部分的周长=弧BE+弧CE+BC=(4π/2)*1/3+(4π/2

以B与C为圆心的两个半圆的直径都是4分米.求阴影部分的周长.我会加悬赏的

2πrn/360=弧长n=60°,一个弧长为2/3πdm,这是两个相等的弧长,所以乘2=4/3πdm再问:不对,答案好像是6.19DM吧求算式再答:2×π×2×60°÷360°×2=4/3πdm若是要

正方形ABCD的边AB为直径,在正方形内部以AB为半径做半圆.圆心为O.DF切半圆与点E,交BC与G,交AB的延长线

∠EDF=∠ADE=2∠ADO,tan∠ADO=1/2.∴tan∠EDF=1/(1-1/4)=4/3∴tan∠F=3/4GB=GE=3(∵BF=4)OB=6(楼主补充⊿BGO∽⊿AOD)AD=2AO=

初中数学关于圆的综合题:如图,以正方形ABCD的顶点D为圆心,在正方形内作圆弧AC,以BC为直径的半圆与弧AC

以点B为原点,BC、BA所在直线分别为x轴、y轴建立坐标系则正方形四顶点的坐标分别为A(0,a)、B(0,0)、C(a,0)、D(a,a)设以BC为直径的圆的圆心为O,则O(a/2,0)⊙O的方程为:

如图:以BC为圆心的两个半圆直径为6cm,求阴影部分的周长.

(4pi+6)cm.由于点e即在圆B上,又在圆C上,故BE、CE都是半径,BE=CE=BC=6cm,即三角形BCE是正三角形,故在圆C中,弧BE所对的圆心角是角BCE=pi/3,所以弧BE长度=6*(

如图:以BC为圆心的两个半圆直径为6cm,求阴影部分的周长

两个半圆直径为6cm,BC=3cm;作EF垂直于BC,则BF=CF=BC/2=3/2=1.5cm;连接BE,BE=BC=3cm,BF=BE/2,∠BEF=30°,∠FBE=60°;弧EC=2π*BE*

如图,正方形ABCD的边长为4㎝,以点A为圆心、AB为半径画弧BD,又分别以BC和CD为直径画半圆,求图中阴影部分面积

S扇BAD=1/4πR^2=1/4X4X4X3.14=12.56S阴影BCD=S正-S扇=16-12.56=3.44两个半圆的面积就是以2为半径的圆的面积,然后把圆的面积加上3.44就行了

以线段AB为直径作一个半圆,圆心为O,C是半圆上一点,且OC平方=AC乘以BC,求角CAB的正弦.

半圆所以为直角三角形设AB即直径doc为中线0c=1/2*dAC*BC=1/4*d^2直角三角形中AC^1+BC^2=AB^2=d^2所以AC=1/2*[(根号3/2)*d+(根号1/2)*d]BC=

以直角三角形ABC的三边为直径分别作三个半圆,已知以AC为直径的半圆面积为S1,以BC为直径的半圆的面积为s2

(1)s1=1/2*π*(1/2*AC)^2=1/8*π*AC^2同理的s2=1/2*π*(1/2*BC)^2=1/8*π*BC^2S3=1/8*π*AB^2=1/8*π*(BC^2+AC^2)=S1