以AC上动点O为圆心,以AO为半径 则CE的最小值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:29:56
设入射角为i、折射角为r,n=sini/sinri=角OMN,r=角OBN,sini=ON/OM,sinr=ON/OB,所以,n=OB/OM=R/
证明:因为BO=OD,AB=AO;故角B=角B0A=角BDO则角BOD=角A又因为AD=BO=DO;故角A=角DOA则角DOA=角BOD;故弧BD=弧DE;设角A=X则角B=角BOA=2*角DOA=2
证明:连接AC,AD∵AB是直径,∴∠ACB=90º∵AC=½AB∴∠CBA=30º同理,∠DBA=30º∴∠CBD=60º∵∠CAB=∠DAB=∠C
∵∠O=90°,AO=√2.,BO=1由勾股定理得AB²=OB²+OA²∴AB=√3∵OC垂直AB,∴有C是PB的中点由射影定理得BO²=BC*ABBC=1/√
OB=1,AB=3OA=√10,OC=OB=1AC=√10-1AD=AO+OD=√10+1AC×AD=(√10-1)(√10+1)=9AB²=9AB²=AC×AD
证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.
∵AD=BO=OD,∴∠A=∠AOD,∠B=∠ODB=∠A+∠AOD=2∠A,∵AB=AO,∴∠AOB=∠B=2∠A,∴5∠A=180°,∠A=36°,∴∠AOD=∠A=36°,∴∠BOD=72°-3
x²-12x+27=0(x-3)(x-9)=0x=3x=9因为AO
观察图形,发现:阴影部分的面积是两半圆面积差的一半,即S阴影=12(S大圆-S小圆)=12(π×32-π×12)=4π.
解题思路:本题目根据等腰三角形以及弧长的计算公式解答即可得到答案解题过程:
连接OC,∵∠AOB=90°,∠B=20°,∴∠A=70°,∵OA=OC,∴∠OCA=70°,∴∠COA=180°-70°-70°=40°,∴lAC=nπr180=40π×12180=8π3.
AD=BOBO为园半径所以BO=OD=OE=AD所以在△ODB中∠ODB=∠B△ADO中∠A=∠AOD已知AO=AB所以∠AOB=∠B∠AOB=∠B=∠ODB=∠A+∠AOD(外角)同时∠AOB=∠A
作OE⊥AB由垂径定理所以AE=BE,且CE=DE所以AC=BD很高兴为您解答,如果本题有什么不明白可以追问,互相帮助,祝新年快乐
过C作CG⊥OB于G将线段CG三等分,取靠近G的三等分点为H过H作HE⊥CG于H,交弧于E连接并延长CE交OB于F则有CE=2EF证明:∵CG⊥OB,HE⊥CG∴HE∥GF∴CE/EF=CH/HG而H
连接OD,∵PO=PD,∴OP=DP=OD,∴∠DPO=60°,∵等边△ABC,∴∠A=∠B=60°,AC=AB=9,∴∠OPA=∠PDB=∠DPA-60°,∴△OPA≌△PDB,∵AO=3,∴AO=
连接AB,∵以O为圆心,任意长为半径画弧,与射线OM交于点A,∴OA=OB,∵以A为圆心,AO长为半径画弧,两弧交于点B,∴△AOB是等边三角形,∴∠AOB=60°,∴sin∠AOB=sin60°=3
(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC
从点O引垂线至CD,垂足为点N,即交于CD上点N;在三角形OCM和三角形OCN中,因为角COM=角CON=90度,角ACB=角ACD,OC=OC,所以三角形OCM和三角形OCN全等;所以ON=OM=圆
因为O是三角形的外心,所以AO^2=BO^2=CO^2.所以2BC*OA=BC*2OA=BC*[(BA-BO)+(CA-CO)]=BC*(BA+CA-BO-CO)=BC*(BA+CA)-BC*(BO+