以 abc的一边ab为直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:26:15
证明:(1)连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°-∠C=30°,(2分)∴∠FDO=180
连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC
(1)连接CE∵∠C=90°、AE=BE∴CE=AE又∵DA=DC∴DE是AC的垂直平分线∴DE∥CB(2)AC=√3BC当AC=√3BC时,∠B=60°∵∠ACD=60°∴∠ACD=∠B∴BE∥CD
①如图,根据圆和正方形的对称性可知:GH=12DG=12GF,H为半圆的圆心,不妨设GH=a,则GF=2a,在直角三角形FGH中,由勾股定理可得HF=5a.由此可得,半圆的半径为5a,正方形边长为2a
太简单了啊!连接OD,OE,由等边三角形OBD得BD=R,由等边三角形OEC得EC=R,由等边三角形ODE得DE=R,所以三者相等!(根据角度判断等边三角形)
前几天看过这题,不过是以AC为直径,图为原题解答,望采纳.再问:为什么共圆?再答:角CHB=角BDC=90度,同弧所对圆周角相等,求采纳呀
证明:连接AE∵AB是直径∴∠AEB=90度∵AB=AB∴∠BAE=∠DAE∴弧BE=弧DE∴BE=DE
因为EDC相似于ABC所以DC分之BC=EC分之AC角ECD=角ACB角ECD-角ACD=角ACB-角ACD即角ACE=角BCD又因为ACE相似于BCD所以角EAC=角B因为在ABC中AB=AC所以角
证明:连接PC∵PEPF都为圆的切线∴B、C、P在一条直线上且∠BPE=∠BPF、PE=PF又BP=BP∴△BPE≌△BPF(边角边)∴∠EBP=∠FBP又∠BED=∠BFA=90度(BC为直径)∴△
∵AE平分∠BAC∴由角平分线定理可知AB/AC=BE/EC∵tan∠AEC=2设EC=a,则AC=2a∴有AB/5=2a/a,AB=10∵AC为⊙O切线∴∠ACB=90°在Rt△ABC中由勾股定理可
此题难度不小啊!码字不易,望楼主采纳!
证明:设这里的切线交AC于F,并设半圆的圆心是O依题意,EF垂直于ACOE也垂直于AC(切线)所以,EF平行于OE因为O是BC的中点所以OE是三角形ABC的中位线所以OE=1/2ACOE=1/2BC(
证明:设这里的切线交AC于F,并设半圆的圆心是O依题意,EF垂直于ACOE也垂直于AC(切线嘛)所以,EF平行于OE因为O是BC的中点所以OE是三角形ABC的中位线啦所以OE=1/2ACOE=1/2B
BC=AC.证明:连接OE.∵EF是圆的切线,∴OE⊥EF,又∵EF⊥AC∴OE∥AC,∵OC=OB,∴OE是△ABC的中位线,∴AC=2OE,又∵BC=2OE,∴BC=AC.
1连接OD,OE,那么OD=OE=½BC∴OD=OE=DE=BO=OC∴三角形ODE是等边三角形,三角形BOD和COE是等腰三角形∴∠DOE≡60°∠DBO=∠BDO∠C=∠OEC∴∠B
(1)设BC中点(即半圆圆心)为F,连接DF,EF;则因为DF=EF=1/2BCDE=1/2BC所以DF=EF=DE即△DEF为等边三角形所以角DFE=60度又因为角A=180度-角B-角C角DFE=
解题思路:切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解题过程:
2)AD=DC=AO=2=BC/2DF=CD*sinC=√33)CF=EF=1/2CD=1S三角形DEF=1/2*DF*EF=√3/2
证:∵△ABC和△CDE都是正三角形∴CB=CA,CD=CE,∠BCD=∠ACB-∠ACD=60°-∠ACD=∠ECD-∠ACD=∠ACE∴△BCD≌△ACE∴∠CAE=∠ABC=∠ACB=60°【∠
第一个为(根号5):2(这个比较简单,不用说了)第二个;设AD=x,BD=y则xy=100,AC=x+4,BC=y+4所以(x+y)²=(x+4)²+(y+4)²整理得: