以 abc的一边ab为直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:26:15
以 abc的一边ab为直径
已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F

证明:(1)连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°-∠C=30°,(2分)∴∠FDO=180

如图,以圆o的直径BC为一边作等边三角形ABC,AB,AC交圆O于D,E两点,试证明BD,DE,

连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC

如图,在Rt三角形ABC中,角C=90°,以AC为一边向外作等边三角形ACD,E为AB的中点.

(1)连接CE∵∠C=90°、AE=BE∴CE=AE又∵DA=DC∴DE是AC的垂直平分线∴DE∥CB(2)AC=√3BC当AC=√3BC时,∠B=60°∵∠ACD=60°∴∠ACD=∠B∴BE∥CD

如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点

①如图,根据圆和正方形的对称性可知:GH=12DG=12GF,H为半圆的圆心,不妨设GH=a,则GF=2a,在直角三角形FGH中,由勾股定理可得HF=5a.由此可得,半圆的半径为5a,正方形边长为2a

以圆O的直径BC为一边作等边三角形ABC,AB、AC交圆O于D、E两点.试猜测线段BD、DE、EC相等吗?

太简单了啊!连接OD,OE,由等边三角形OBD得BD=R,由等边三角形OEC得EC=R,由等边三角形ODE得DE=R,所以三者相等!(根据角度判断等边三角形)

锐角三角形ABC,以其一边AB为直径做圆,AC∩圆=D,以AC为半径向外做半圆,BD延长线∩半圆=E.连接AE.做三角形

前几天看过这题,不过是以AC为直径,图为原题解答,望采纳.再问:为什么共圆?再答:角CHB=角BDC=90度,同弧所对圆周角相等,求采纳呀

如图,以等腰三角形ABC的一腰AB为直径做圆

证明:连接AE∵AB是直径∴∠AEB=90度∵AB=AB∴∠BAE=∠DAE∴弧BE=弧DE∴BE=DE

如图所示,D为等边三角形ABC的AB上一点,以CD为一边,向上做等边三角形CDE,连接AE.求证:AE平行BC

因为EDC相似于ABC所以DC分之BC=EC分之AC角ECD=角ACB角ECD-角ACD=角ACB-角ACD即角ACE=角BCD又因为ACE相似于BCD所以角EAC=角B因为在ABC中AB=AC所以角

初三知识——圆如图,以三角形ABC的一边BC为直径做圆,分别交AB.AC所在直线与点E.F,过点E.F分别做圆的切线交于

证明:连接PC∵PEPF都为圆的切线∴B、C、P在一条直线上且∠BPE=∠BPF、PE=PF又BP=BP∴△BPE≌△BPF(边角边)∴∠EBP=∠FBP又∠BED=∠BFA=90度(BC为直径)∴△

△ABC中,以BC为直径的圆交AB于点D,AC为圆O的切线

∵AE平分∠BAC∴由角平分线定理可知AB/AC=BE/EC∵tan∠AEC=2设EC=a,则AC=2a∴有AB/5=2a/a,AB=10∵AC为⊙O切线∴∠ACB=90°在Rt△ABC中由勾股定理可

△ABC中,以BC为直径的圆交AB与点D,AC为圆O的切线.

此题难度不小啊!码字不易,望楼主采纳!

已知:如图,以三角形ABC的一边BC为直径作半圆,交AB于E,过E点作半圆O的切线恰与AC垂直,试确定BC与AC的大小关

证明:设这里的切线交AC于F,并设半圆的圆心是O依题意,EF垂直于ACOE也垂直于AC(切线)所以,EF平行于OE因为O是BC的中点所以OE是三角形ABC的中位线所以OE=1/2ACOE=1/2BC(

以三角形ABC的一边BC为直径作半圆,交AB于E,过E点作半圆的切线恰与AC垂直,试证明BC长等于AC

证明:设这里的切线交AC于F,并设半圆的圆心是O依题意,EF垂直于ACOE也垂直于AC(切线嘛)所以,EF平行于OE因为O是BC的中点所以OE是三角形ABC的中位线啦所以OE=1/2ACOE=1/2B

已知:如图,以△ABC的一边BC为直径作半圆,交AB于E,过E点作半圆O的切线恰与AC垂直,试确定边BC与AC的大小关系

BC=AC.证明:连接OE.∵EF是圆的切线,∴OE⊥EF,又∵EF⊥AC∴OE∥AC,∵OC=OB,∴OE是△ABC的中位线,∴AC=2OE,又∵BC=2OE,∴BC=AC.

如图,以锐角ΔABC的一边BC为直径作半圆,交AB于D,交AC与E

1连接OD,OE,那么OD=OE=½BC∴OD=OE=DE=BO=OC∴三角形ODE是等边三角形,三角形BOD和COE是等腰三角形∴∠DOE≡60°∠DBO=∠BDO∠C=∠OEC∴∠B

如图,以锐角△ABC的一边BC为直径作半圆,交AB于D,交AC于E ⑴若DE=1/2BC,求∠A的度数 ⑵若BC=6,D

(1)设BC中点(即半圆圆心)为F,连接DF,EF;则因为DF=EF=1/2BCDE=1/2BC所以DF=EF=DE即△DEF为等边三角形所以角DFE=60度又因为角A=180度-角B-角C角DFE=

如图,以三角形ABC的一边AB为直径作圆O,圆O与BC边的交点D恰好为BC的中点,过点D作圆O的切线交AC边于点E。 (

解题思路:切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解题过程:

如图所示,D为等边△ABC的AB边上一点,以CD为一边,向上作等边△CDE,连接AE.求证:AE‖BC

证:∵△ABC和△CDE都是正三角形∴CB=CA,CD=CE,∠BCD=∠ACB-∠ACD=60°-∠ACD=∠ECD-∠ACD=∠ACE∴△BCD≌△ACE∴∠CAE=∠ABC=∠ACB=60°【∠

16.如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过ΔABC的内切圆圆

第一个为(根号5):2(这个比较简单,不用说了)第二个;设AD=x,BD=y则xy=100,AC=x+4,BC=y+4所以(x+y)²=(x+4)²+(y+4)²整理得: