2016上海如图在RT三角形ABC中角ACB=90

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:08:18
2016上海如图在RT三角形ABC中角ACB=90
如图 在rt三角形abc中 角acb等于90度 a=5 c=13 求b

∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/

如图RT三角形A'BC是由RT三角形ABC绕点B顺时针旋转所得,且ABC在同一直线上

数理答疑团为您解答,希望对你有所帮助.∠C=90°,BC=2,AB=4,则∠A’BC‘=∠ABC=60°,AC=2√3扫过面积=πAB²/2-60πAB²/360+S△A’BC‘=

相似三角形:如图,在等腰RT三角形ABC中,AB=1,∠A=90°

因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A

如图在Rt三角形ABC中角A=90度,以BC边上的一点O

答:ab/(a+b)解析:连接OF,可证△BOF∽△BCA,OF:AC=BF:AB,其中OF=半径r,BF=a-r,解得r=ab/(a+b)

如图,RT三角形ABC中,

如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4

如图在RT三角形ABC中,∠C=90,∠A=30,BC和AB的关系

作角ABD=30度,D在AB上则三角形ACD是等腰三角形所以AD=CD角ADC=180-30-30=120度所以角CDB=60度而角B=180-90-30=60度素三角形BCD是等边三角形所以CD=B

如图,在RT三角形ABC中,∠C=90°,M为AB边上中点,将RT三角形ABC绕点M旋转,使点C与点A重合得到三角形DE

分析:(1)根据旋转的性质:旋转前后的图形全等,得到对应角和对应边之间的关系.(2)根据旋转的性质用同一个未知数表示出有关的边,根据勾股定理列方程计算.(1)∵Rt△ABC绕点M旋转得△DEA,∴△A

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

已知:如图,在Rt三角形abc中,∠acb=Rt∠,∠a=30°,cd⊥ab于点d,求证三角形abc相似三角形cdb

因为CD⊥AB所以∠CDB=Rt∠所以∠ACB=∠CBD又因为∠∠B=B所以△ABC相似于△CBD(本题于∠A=30°无关)

如图 D为Rt三角形AB.

解题思路:(1)连接DH、CI,过点O作OM⊥AG,垂足为点M,EM=FM,再证出GD∥AC∥OM,根据OD=OC,得出GM=AM,即可证出AF=GE,(2)先证出四边形AGDH是矩形,求出AG、EF

数学如图在RT三角形ABC

过C作CD⊥AB,D为垂足∵MN⊥AB∴CD//MN∴∠DCN=∠N∵CN平分∠ACB∴∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD∵CM是斜边AB上的中线∴AM=BM=CM∴∠A=∠A

如图在平面直角坐标系中Rt三角形OAB

oA:y=4/3x反比例函数表达式:y=12/xC:(4,3)M的坐标为(1.5,2)连接MC与AB的交点就是点P的坐标MC的表达式要求出来

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,rt三角形abo的顶点a是双曲线

在第二象限有交点,则K

已知,如图,在RT三角形ABC中,

求证啥东西?麻烦采纳,谢谢!

已知:如图在Rt三角形ABC中, . 帮帮忙 ~

连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45

如图,在rt三角形abc中,角bac等于90度,ac等于2a

解题思路:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.解题过程:附件

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的