令RSA密码P=3 q=11 d=7 m=5手算密文C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:30:47
c值的是算出来是正确的,但是M值设置是错误的,在RSA算法中m值不能大于n值,在该算法中是模运算,求出的明密文必然小于n,因此明文不能大于nC=M^emodN;M=C^emodN;
mod是求余运算符.如果x与y的积除以z所得的余数为1,即xy=1(modz),则称x和y对于模数z来说互为逆元,这种互为逆元的关系用符号表示为:x=y的-1次方(modz)x的-1次方=y(modz
n=p*q=15φ(n)=(p-1)*(q-1)=8de=1(molφ(n))d=7再问:请问这句是什么意思,可以解析下么,谢谢de=1(molφ(n))再答:就是d*e=i*φ(n)+1(i=1,2
没有e没法求dp和q也没给我郁闷先说欧几里得算法,这个是一个函数,求的话累死.欧几里得算法是求最大公约数的,求逆元用扩展的欧几里得算法原理:如果gcd(a,b)=d,则存在m,n,使得d=ma+nb,
n=p*q=33phi=(p-1)(q-1)=20e=7e*d=1(modphi)d=17公私密钥对:(n,d)(n,e)编码过程是,若资料为a,将其看成是一个大整数,假设a如果a>=n的话,就将a表
首先说一下求d的答案,ed=1mod(p-1)(q-1)=1mod60即7d=1mod60的意思是e与d的乘积对(p-1)(q-1)取余结果是1,题目给出e=7,(p-1)(q-1)可以求得是60,即
公钥为17. #include #include #include //判断公钥e是否为素数,1成立,0不成立 intprime(inte); //判断公钥e与(p-1)*(q-1)的最大
p=11,q=19、e=17n=pq=209(p-1)(q-1)=180d*e=1(mod180)d=53
n=pq=33\phi(n)=(p-1)(q-1)=2*10=20ed=1mod(\phi(n))用扩展欧几里德可求出d=3(直接看出来也可以.)加密密文C=(M^e)%n=(5^7)%20=5解密明
N=3599=59×61φ(N)=58*60=3480所以d为e模3480的乘法逆元素d=3031(3031*31=27*3480+1)
确定n=p*q=33t=(p-1)*(q-1)=20取e=3计算d,d*emodt=1.则d=7.私钥{n,d}既{33,7}公钥{n,e}{33,3}
n=P*q=10n的欧拉值=(p-1)*(q-1)=4e满足1
你用的语言是哪个?我当时是用C语言写的代码,实现最大RSA-2048.我把思想给你说一下吧.如果我们要定义一个很小的e、d、n、m,那么直接unsignedlongint就可以了.但是这样定义的数据的
如例:自己算p=34q=59这样n=p*q=2006t=(p-1)*(q-1)=1914取e=13,满足eperl-e"foreach$i(1..9999){print($i),lastif$i*13
RSA是基于这个原理实现的,但貌似求mol运算本身和RSA没关系吧求逆运算d*11=d*3(mol8),然后从0试到7,发现当d=3时3*3=9=1(mol8),具体是没有一个直接运算的算法的,尝试算
φ(n)=(p-1)(q-1)=6*10=60ed≡1(modφ(n))17d≡1(mod60)上式相当于解不定方程17x+60y=1用"扩展欧几里得算法"求解得到一组解为(x,y
计算n=p*q=33求密文:密文c=m^emodn=21952mod7求明文:明文m=c^dmodn=823543mod33=28在使用时,首先将明文数字化,然后分组,每组数据k(0=
mod是求余运算符.如果x与y的积除以z所得的余数为1,即xy=1(modz),则称x和y对于模数z来说互为逆元,这种互为逆元的关系用符号表示为:x=y的-1次方(modz)x的-1次方=y(modz
N=p*q=101*97=9797φ(N)=(p-1)(q-1)=9600欧拉函数(13,9600)=19600=13*738+6辗转相除法13=6*2+11=13-2*6=13-2*(9600-13
n=p*qp和q取2个最大公约数为1的质数,就得到59和61,