从dx dy=1 y^ 到出d^2 dy^2=-y^ (y^ )^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:30:04
T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
答:设极坐标x=cosθ,y=sinθ,1
pi*(pi/2-1)
1,在D上的二重积分∫∫f(x,y)dxdy的几何意义是,以D为底,以曲面z=f(x,y)为顶的曲顶柱体的体积,本题中根据被积函数和积分区域,可以看出这个积分表示球体x^2+y^2+z^2=1在第一卦
原式=∫dy∫(1+x+2y)dx=4∫(1+y)dy=4×8=32.
原式=∫_0^1▒〖(sinx/x)dx〗∫_x^2x▒〖dy=∫_0^1▒〖(sinx/x)*(2x-x)dx〗〗=∫_0^1▒〖(sinx)dx=-
积分区域:0≤x≤1,0≤y≤x∫∫3xy^2dxdy=3∫xdx∫y^2dy=3∫x[y^3/3]dx=3∫x*x^3/3dx=∫x^4dx=x^5/5=1/5
我来回答吧:1),因为D是矩形区域,0
原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^
第一题的积分区域没写清楚,无法做.第二题先画图,然后知道所求的结果可以写为:2*[∫(1-x*x/4)dx-∫(1-x*x)dx]前面定积分的下限是0,上限是2.后面的定积分的下限是0,上限是1.这样
原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³
先对x积分在对y积分∫∫e^(-y^2)dxdy=∫(0,1)[∫(0,y)e^(-y^2)dx]dy=∫(0,1)ye^(-y^2)dy=-1/2∫(0,1)e^(-y^2)d(-y^2)=-e(-
换元法x=rcosax^2+y^2≤1所以0
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
积分域就是个长方形.而那个抛物线就是y=x²所以|y-x²|要根据积分域上的划分去判断y-x²和x²-y
x^2+y^2=x+y化成标准式(x-1/2)^2+(y-1/2)^2=1/2x=1/2+rcosαy=1/2+rsinαα∈[0,2π]r∈[0,√2/2]∫∫(x+y)dxdy=∫∫(1+rcos
I = ∫∫ (1 + xy)/(1 + x² + y²) dxdy,D&nbs
∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/