从1到300的自然数中,完全不含有数字3的数共有多少个?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:23:19
有900个,收现从1到10开始,包含8的有1个,1到20开始,包含8的有2个,依次类推发现一个规律,都是10的倍数,1000是10的100倍,所以有100个包含8的数字,减去这些数字,就是900个不包
54=9x6所以要求的数是6和一个完全平方数的积.6x1^2,6x2^2……6x12^2共12个.再问:为什么再答:54=9x69是完全平方数,所以要求的数是6和一个完全平方数的积。
解法1:将符合要求的自然数分为以下三类:(1)一位数,有1,2,4,5,6,7,8,9共8个.(2)二位数,在十位上出现的数字有1,2,4,5,6,7,8,9共8种情形,在个位上出现的数字除以上八个数
54=9x6所以要求的数是6和一个完全平方数的积.6x1^2,6x2^2……6x12^2共12个.54=9x69是完全平方数,所以要求的数是6和一个完全平方数的积
解题思路:从1到500的所有自然数可分为三大类,即一位数,两位数,三位数,在1~500中,不含4的一位数有8个,不含4的两位数有8×9=72个;不含4的三位数有3×9×9+1=244个,由加法原理,在
分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有1、2、3、5、6
含数字9的:10+10-1=19个不含数字9的:100-19=81个
72=36*2,36是完全平方数所以原题即1到2011的所有自然数中有多少个数乘以2后是完全平方数,所以这些数必须是偶数,且这些数除以2后也是完全平方数,2011/2=1005所以在1005以内的所有
72=36*2,36是完全平方数所以原题即1到2011的所有自然数中有多少个数乘以2后是完全平方数,所以这些数必须是偶数,且这些数除以2后也是完全平方数,2011/2=1005所以在1005以内的所有
72=(2*2)*(3*3)*2因此完全平方数(设为N*N)*2*72===(2*2)*(3*3)*(2*2)*(N*N)就还是完全平方数所以N*N*2应该小于2003也就是说,小于1002的完全平方
设1-1000中的任意一个数表示为ABC,其中A,B,C属于0,1,2,3,4,5,6,7,8,9001表示1由于完全不含有1,所以A有9种取法,B有9种取法,C有9种取法ABC有9*9*9=729种
多谢sixiaoguai提醒.打惯C++了,一时改不过来.#includeintmain(){intn=300,i;intcounter=0;for(i=1;i
44=193645=2025从1到1999的自然数中,完全平方数有44个
72=2×2×2×3×3最小的是:72×2=144144再乘上一个完全平方数,也满足要求就要看1--2008,有多少个数除以2以后还是完全平方数2*31^2=19222*32^2=2048>2008满
把1、10、11、12、13、14、15、16、17、18、19、21、31、41、51、61、71、81、91去了就知道了.一共81个
899+89+8=996
72=9×4×29和4是完成平方数则72乘以一个完全平方数的2倍,则为完全平方数2008内最大的平方数的2倍是31²×2=1922所以从1到2008的所有自然数中,乘以72后是完全平方数的数
设1-1000中的任意一个数表示为ABC,其中A,B,C属于0,1,2,3,4,5,6,所以一共有729-1=728个数字完全不含有1729个,即个位数、十位数、
每10个数有一个4,再去掉其他十位是4,百位是4,还有334个再问:我问的是页码问题,请不要用其它方法做!再答:什么是页码问题?被选为推荐答案的答案好像多算了
个位数字是8个十位数字是8×8=64个(其中以1开头的全部不合要去求)百位数应该是7×64=448个,百位只能是2,3,4,5,7,8,9那么共有8+64+448=520个.