从1-10个自然数中至少要取出?个数,才能保证其中一定有一个数不是3的倍数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:52:44
这……是说总共只取两个数么那么假设第一个数是1,那么第二个只能取100,1种取法第一个数是2,那么第二个只能取99,100,2种取法……直到第一个是100,那么第二个数从1到100都可以,100种取法
根据题意,将这10个数分为奇数与偶数两个组,每组各5个数;若取出的四个数的和为偶数,则取出的四个数必有2个或4个或0个偶数;若有2个奇数2个偶数时,有C52×C25=100种取法,若有4个偶数时,有C
自然数被5除余数分五种:余0(也就是被整除)、余1、余2、余3、余4取6个数,则必有两个自然数被5除的余数相同,而这两个数的差被5除则余0,即是5的倍数
好像是抽屉原理什么的想最多取多少个数都没一个是5的倍数.1-30里5,10,15,20,25,30是5的倍数,所以最多取24(去掉上述的6个)个数里面没一个是5的倍数所以如果取25个数的话里面肯定有一
这个有很多解,举两个例子,例如:2002+2003=4005>20045+2003=2008>2004如果要求共有多少种的情况,具体如下:当两个数中必含2004,那么1,2,3……2003(不相互重复
抽屉原理,1-100不是合数的一共有12357111317192329313741434753596167717379838997,共26个.所以取出27个就能保证至少有一个合数
因为这7个数除以6取余数,至少有2个数的余数相同.那么这2个数的差是6的倍数
抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理.把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的
这样:对于每个数字n,将它写为n=m*2^k,其中k为非负整数,m为奇数.则对于100以内的自然数,m最大可能为99.即只有1,3,5,...,99这50种可能.因为有51个数,根据抽屉原理,必有两个
用抽屉原理解决把1~99分成33组,即(1、2、3),(4、5、6),(7、8、9)……(97、98、99)每一组中,第一个数和第三个数的加和是第二个数的二倍因为67÷33=2余1任取67个数,最多可
因为这7个数除以6取余数,至少有2个数的余数相同.那么这2个数的差是6的倍数.
对于这道题不适合从正面证明,需要采用反证法.假如这六个数任意两个的差都不为5的倍数.那么,设第一个数为a则第二个数:只可以为a+5n1+1,a+5n2+2,a+5n3+3,a+5n4+4(其中,n1,
27个考虑取了1至26.此时任意两个数字和不为52.但接下来不管取什么数,必有两数之和为52.
至少有两个数相邻,互质
1,2…30中共有5、10、15、20、25、30这6个数是5的倍数,取出24个不能保证有一个为5的倍数.24+1=25(个),所以取出25个不同的数字,才能保证其中一定有一个数是5的倍数,故答案为:
2013÷50=40..13最多40+1=41个数
最差劲的情况就是取到的5个球同色,如果再取一个,则一定有一个不同颜色,所以要保证一定有两种颜色,至少要取六个!
最少7个~因为100以内的质数有2357111317192329313741434753596167717379838997一共25个.间隔最大的数字是7.
利用插花法,将20盆花放好,从中拿出6盆作插花用,剩余的13盆排好一队,现在6盆花可以插放在13盆花中的空隙中,有12处位置加上最边上2个位置共14个位置,6盆花随意插入14个位置,这时从左至右给所有
答:1~100这100个自然数中有25个质数,74个合数,1既不是质数也不是合数.所以至少要取76个数才能保证取出的数中至少有一个是质数.