介于抛物线y²=2x与圆y²=4x-x²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:44:55
介于抛物线y²=2x与圆y²=4x-x²
抛物线y=-2x^2-x+3与y轴交点坐标是?与x轴交点坐标是?

抛物线y=-2x^2-x+3y=(-2x-3)(x-1)与y轴交点坐标是(0,3)与x轴交点坐标是(3/2,0)和(1,0)

抛物线y=-x的平方-2x+3与x轴交点,与y轴交点是什么

y=-x的平方-2x+3=-y=-(x的平方+2x-3)=-(x-1)(x+3)与x轴交点(1,0)和(-3,0)与y轴交点(0,3)

直线y=x与抛物线y=-2x的平方的交点是

根据题意有x=-2x^2解这个方程有x1=0,x2=-1/2所以对应的y1=0,y2=-1/2直线y=x与抛物线y=-2x的平方的交点是(0,0)(-1/2,-1/2)

已知抛物线y=-2(x-1)²+8 求 抛物线与y轴交点坐标 抛物线与x轴的两个交点间的距离

已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&

圆心在抛物线x2=2y(x>0)上,并且与抛物线的准线及y轴均相切的圆的方程是(  )

由题意知,设P(t,12t2)(t>0)为圆心,且准线方程为y=-12,∵与抛物线的准线及y轴相切,∴|t|=12t2+12,∴t=±1,∵t>0,∴t=1∴圆的标准方程为(x−1)2+(y−12)2

求抛物线y=2(x-3)的平方与y轴的交点坐标

因为抛物线与y轴的交点,则x=0即y=2(0-3)的平方=2*9=18所以交点坐标是(0,18)

一条抛物线的形状 ,开口方向与抛物线y=1/2x相同,对称轴及顶点与抛物线y=3(x-2)相同,求其解析式

答:抛物线开口和形状相同,则a值相同y=ax^2+bx+c的开口形状和方向与y=(1/2)x^2的相同则有:a=1/2y=3(x-2)^2的对称轴x=2,顶点(2,0)则对称轴x=-b/(2a)=2所

抛物线y=2x

∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

将抛物线y=ax²向右平移2个单位所得抛物线的顶点为a,与y

解题思路:利用“减右加左”的平移法则来平移,再利用经过B(0,4)来求出a,然后利用轴对称的知识找出点P。解题过程:解答过程见附件。最终答案:略

已知抛物线C1:y=x²-2x-3,抛物线C2与抛物线C1关于X轴对称,若

由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0

一条抛物线的形状、开口方向与抛物线y=2X²相同,对称轴和抛物线y=(X-2)²相同,且顶点纵坐标为

∵y=(x-2)²的对称轴为x=2∴此抛物线的解析式为y=2(x-2)²+b又顶点纵坐标为0∴y=2(x-2)²=2x²-8x+8

已知圆C:x^2+y^2-4x=a,抛物线y^2=4x,过抛物线焦点F的直线L与圆交于M,N,与抛物线相交于A,B

假设存在这样的直线,则FA·FB=MN^2如果斜率不存在,检验一下是否可以,以下讨论斜率存在的情况:注意运用抛物线上一点的性质:设A、B的横坐标分别是x1,x2,则联立直线方程与抛物线方程消元后,可以

抛物线y=-5x^2+4x+7与y轴的交点坐标

抛物线y=-5x^2+4x+7与y轴的交点坐标x=0时y=7抛物线y=-5x^2+4x+7与y轴的交点坐标是(0,7)

已知抛物线c1:y=2/3x+16/3x+8与抛物线c2关于y轴对称,求抛物线c2的解析式

控制开口大小不变,即二次项系数不变;对称轴关于y轴对称,所以将一次项系数符号变为负,顶点位置对称,所以最低点y轴坐标相同

已知抛物线x^2=2py(p>0)的准线与圆x^2+y^2-4y-5=0相切,则抛物线的方程为

已知抛物线x^2=2py(p>0)的准线y=-p/2圆x^2+y^2-4y-5=0x^2+(y-2)^2=9抛物线x^2=2py(p>0)的准线与圆x^2+y^2-4y-5=0相切,-p/2=-3p=

若抛物线y = ax^2与曲线y = In x相切,则a= ( )

假设切点是A(m,n)则他在两个函数上n=am²n=lnm所以am²=lnm且此处两个切线是同一条,所以斜率相等即导数相等y=ax²,y'=2axy=lnx,y&