(根号n-1-根号n)为发散的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:25:10
(根号n-1-根号n)为发散的
已知根号m,根号n是方程x^2-3x+1=0的两个根,求m*根号m-n*根号n/根号m-根号n

分子分母同乘(根号M+根号N)化简得原式等于M+N+根号M*根号N再计算(根号M+根号N)^2=m+n+2根号MN=9所以M+N=7所以原式等于8

关于级数敛散性的证明 证明级数 ((-1)^n )/((根号n)+(-1)^n)是发散的

首先,由Leibniz判别法,可知级数∑(-1)^n/√n收敛.两级数相减得∑(-1)^n·(1/√n-1/(√n+(-1)^n))=∑1/(√n(√n+(-1)^n)).这是一个正项级数,通项与1/

判断此级数的敛散性:(n1-无穷)(-1)的n次方*根号下(n-根号n)-根号n 答案是发散.具体如何判断!

(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2

求lim(n→无穷)(根号(n+1)-根号n)*根号n 的极限

分子分母乘以(根号(n+1)+根号n)原式=根号n/(根号(n+1)+根号n)=1/(1+根号((n+1)/n))n趋向无穷时原式为1/2

根号n+1-根号n与根号n-根号n-1比较大小

用倒数法把题变成根号(N+1)-根号N分之一与根号N-根号(N-1)分之一比大小分母有理化就变成了根号(N+1)+根号N与根号N+根号(N-1)所以前者大于后者分子一定时分数大的分母小所以根号(N+1

若n为大于1的自然数,求证:n*(开n次根号(n+1))

用数学归纳法:1.当n=2,左边=2*(开2次根号(2+1))=2*(根号3)=根号12,右边=2+1+1/2=3.5=根号22.25,左边k*(开k+1次根号(k+1+1))+开k+1次根号[(k+

求根号n+1-根号n的倒数

根号n+1-根号n的倒数=(根号n+1+根号n)÷[(根号n+1-根号n)×(根号n+1+根号n)]=(根号n+1+根号n)÷(n+1-n)=根号n+1+根号n

根号下n(n+2)+1= n为自然数

根号下【n(n+2)+1】=根号下(n²+2n+1)=根号下(n+1)²=|n+1|因为n是自然数于是n≥0,于是n+1≥0所以原式=|n+1|=n+1

极限1/(n*根号n)*(1+根号2+根号3+.+根号n) n趋于无穷大

先告诉你答案是2/3.我认为题目是根号的和除以n倍根号n,不然极限是0,没什么意义.详细解法如图,我花了好多时间做出来的.多给点分吧.

比较 1/根号n(n+1)和根号n-根号n-1的大小

使用分子有理化的方法分子分母同时乘以它的共轭数(简单来讲一般就是把+、-号换一下)这一题里:根号n+1-根号n分子分母同乘以根号n+1+根号n就变成了1/(根号n+1+根号n)根号n-根号n-1分子分

根号(n+1)+n

伪命题啊n=97右边=97!我看了你们的追问追答发现你算错了...大哥证明根号(n+1)-根号n大于根号(n+3)-根号(n+2)分子有理化之后(左边上下同乘根号(n+1)+根号n,右边上下同乘根号(

根号n+1减去根号n的极限为什么是发散的

我开始做的也是收敛,纠结了,不过换种思路就是列出几项,你会发现这个式子和等于(根下(n+1)-根下1),这个和s极限为无穷,结果是发散再问:是啊,但是用比值判别法貌似又是收敛的……

根号n+1-根号n的极限是什么?

lim[√(n+1)-√n]=lim{1/[√(n+1)+√n]}=0再问:我就是不懂为什么1/[√(n+1)+√n]}=0就等于0了?!再答:|{1/[√(n+1)+√n]}|

1/((根号 n+1) +根号n)=根号 n+1 减根号n 谁知道为什么?

分母有理化.分子分母同乘以(根号n+1减根号n)化简就得.

求 x=根号(n+1)-根号n 的倒数(n为正整数),可分两步完成:

根据定义,倒数乘积为1既然:(根号2-1)(根号2+1)=_1__;(根号3-根号2)(根号3+根号2)=__1_;(2-根号3)(2+根号3)=__1__.即是【根号(n+1)-根号n】【根号(n+

根号910及N立方+N平方+N+1的整数部分(N为正整数)

因为31^2>910>30^2所以31>根号910>30,所以根号910的整数部分是30N立方+N平方+N+1=N(N^2+1)+N^2+1=(N+1)(N^2+1)整数部分位于N+1与N^2+1之间

设x=根号n+1-根号n/根号n+1+根号n y=根号n+1+根号n/根号n+1-根号n n为自然数若

设x=根号n+1-根号n/根号n+1+根号n=(根号n+1-根号n)^2y=根号n+1+根号n/根号n+1-根号n=(根号n+1+根号n)^2所以x+y=2(n+1)+2n=4n+2=2(2n+1)x

数列an中,an=1/(根号(n+2)+根号n),则an的前n项和为

an=1/(√(n+2)+√n)=[√(n+2)-√n]/[(√(n+2)+√n)(√(n+2)-√n)]=[√(n+2)-√n]/(n+2)-n)=[√(n+2)-√n]/22an=√(n+2)-√

判断级数∑(n=1)(-1)^n/(n+根号n)是绝对收敛,条件收敛还是发散

{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛