交换单群只有素数阶循环群
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:23:15
是循环群,生成元是3、5.先把乘法表做出来,然后检验得到:数字3、5分别与各自自身多次做模7的乘法(幂),可以得到群里所有的元素.从这个案例,可见循环群生成元不唯一.
编程穷举解决.不过100以内的素数也不多,一个一个判断也能找出.比如11、13、17、19、31、37、71、73、79、91、97不知道有没有漏...
找到了再问:还有其他页面的。。再问:还有其他页面的。。再答:2,应该选D再问:这是后两页还有一个别的问题再问:麻烦直接告诉我对的吧再答:慢慢来再问:那个不是再问:写的是瞎写的。。再问:好的。。再答:我
循环群就两类,一类与(Z,+)同构,一类与(Zm,+)同构.这个性质一般书上都有介绍吧,用反证法很容易导出矛盾的.这个性质成立的情况下,lz的命题自然成立了.(Zm,+)就是整数关于m的余数的等价类构
显然中心Z(G)是G的一个正规子群,如果G/Z(G)是循环群,且则G/Z(G)=时:令xH,yH属于,且xH=的s次方,yH=的t次方,则xH=a的s次方*H,yH=a的t次方*H,所以有p属于H和q
2个,1和自身
有限群的子群的阶数是母群的因子,6的因子有{1,2,3,6},故有4个子群,分别是,{e},即单位元群,e=a^0,{e,a3}{e,a2,a4}{e,a1,a2,a3,a4,a5}(不理解请追问)再
交换几年前,我搭乘长途汽车在美国的各城市间艰难跋涉,为我的摄影创作寻找素材.就碠次旅行的最后一站西雅图市,我遇风了兰迪.麦克理.兰迪大约有六七十岁,但看起来像已经超过100岁.他的披肩长发灰白零乱,其
(1)G有4个生成元,分别为a,a^3,a^7,a^9.(2)非平凡的子群共有2个,分别为:A1=={e,a^2,a^4,a^6,a^8},A2=={e,a^5}A1的左陪集分解为:{e,a^2,a^
1^(1/q)的解不唯一若x=1^(1/q)则x^q=1h也是上式的根(1/q)的结果不是映射,不是一个合理的运算
至少任意质数阶有限群都是循环群.再问:这个问题我已解决
证明由拉格郎日定理可知,四阶群的元素的阶一定能整除群的阶4,故四阶群的元素的阶只能是1(幺元是唯一的1阶元),2,4,如果有一个元是4阶元,则该元自乘能生成群的所有元素,此时它是循环群,这个4阶元素是
11,13,17,31,37,71,73,79,97
任意12阶循环群同构于Z(12)设元素为{1,a,a^2,...a^11}其子群如下{1}{1,a^6}{1,a^4,a^8}{1,a^3,a^6,a^9}{1,a^2,a^4,a^6,a^8,a^1
大概说一下好了.把这个群G划分成轨道,每个轨道是共轭类.只有一个元素的轨道并在一起就是中心Z(G).|G|=p^2,所以|Z(G)|=1或者p或者p^2.如果一个轨道有不止一个元素(比如有k个元素,k
证明3阶群必是循环群:设该群为G,则1∈G,令a∈G且a≠1,则由于ord(a)|ord(G)=3且ord(a)≠1,故ord(a)=3,因此G={1,a,a^2},G为循环群.证明在同构意义下4阶群
/>G有p^k阶元,但是它的任何真子群里元素的阶最大是p^(k-1),直和也是一样.找出Z2*Z3的一个生成元即可,比如(1,1);Z2*Z2里的元素的阶最大是2,而Z4里有4阶元,也可以看第一题.<
设G=为循环群,f1、f2为其自同构群中的两个元素,则必有f1(a)=a^k1,f2(a)=a^k2,由同构的定义知f1(a^m)=a^(m*k1),f2(a^n)=a^(n*k2)任取g∈G,则必有
n阶循环群中的n表示这个循环群中有n个元素.φ(n)是Euler函数,表示集合{1,2,3,.n}中与n互素的元素的个数.比如φ(3)=2,φ(4)=2.当p为素数时,φ(p)=p-1.n阶循环群的自
有限群的子群的阶数是母群的因子,6的因子有{1,2,3},故有3个子群,分别是,{e},即单位元群,e=a^0,,即