(y)^2-y=0的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:33:38
你这个是二阶常系数齐次线性微分方程属于r1=r2=1的情况代入公式,y=(C1+C2x)e^(r1x)=(C1+C2x)e^x好好看看书,公式要记得!
特征函数r²-1=0r=1或-1那么y=C1e^x+C2e^(-x)C1C2常数
dy/dx=-ydy/y=-dx积分:ln|y|=-x+C1得y=C/e^x
详见:http://hi.baidu.com/%B7%E3hjf/album/item/5fa110df8b26067395ee37a7.html
y''-y=0特征方程是r²-r=0特征根是r=0,r=1故方程的通解是y=C1+C2e^x,C1,C2是任意常数
等于0(什么叫通解?)
首先,可以列出式子:r^2+2r=0,然后就可以解得:r1=0,r2=-2.高数书上应该有写,在这个情况下,y=C1e^r1+C2e^r2所以这里把r1和r2代入就可以啦~就是:y=C1+C2*e^(
答:特征方程为:r^2+r-1=0所以特征根为:r1=(-1+√5)/2,r2=(-1-√5)/2所以通解为:y=C1e^((-1+√5)/2)+C2e^((-1-√5)/2)
特征方程a^2+2a+5=0有共轭复根-1+2i,-1-2i所以通解为y=e^(-x)(C1cos2x+C2sin2x)再问:C1��ʲô再问:�������e��-x��再问:�躯��xe��sin
对应的齐次方程为y'+2y=0解得y*=C(1)[e^(-2x)]然后用常数变易法求原方程的解,设原方程的解为y=C(x)[e^(-2x)]则y'=C'(x)[e^(-2x)]+C(x)(-2)[e^
设y=e^ax带入y''+y'-2y=0求导化简得a^2+a-2=0(a-1)(a+2)=0a=1,a=-2通解为y=e^x+e^-2x+c
特征方程为r²-r-2=0解得r1=2,若=-1∴原方程的通解为:y=C1e^(2x)+C2e^(-x)
对应的特征方程是a^2+a+2=0,解得a是α±iβ的形式的,那么通解就是c1*e^(αx)*sin(βx)+c2*e^(αx)*cos(βx)
满足微分方程的函数y=f(x)称为微分方程的解;通解表示微分方程所有的解,通常用一个带有任意常数的表达式表示.y〃-2y′=0特征方程为λ²-2λ=0解方程,得λ1=0,λ2=2则通解为y=
这是高阶齐次线性微分方程,采用求特解的方法.原方程的特征方程是
特征方程为:r^2+2r+1=0r1=r2=-1y=(c1+c2x)e^(-x)再答:这也太容易了吧再答:以后不懂的都来问我吧,作为学霸的我乐于助人再问:是咩?||X﹏X再答:不用谢再问:求y''-y