(x² px q)(2x-3)展开后不含x.x²向,求pq的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:08:00
f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|
x²+3x+2=(x+1)(x+2)=((x-1)+2)((x-1)+3)=(x-1)²+2×(x-1)+3×(x-1)+6=(x-1)²+5(x-1)+6
解题思路:对不起题意不清解题过程:最终答案:略
1+2x+3x^2+4x^3+5x^4=5(x+1)⁴-16(x+1)³+21(x+1)²-12(x+1)+3(1+2x+3x^2+4x^3+5x^4)/(x+1)=(
f(x)=1/(x+2)=1/[5+(x-3)]=(1/5){1/[1+(x-3)/5]}=(1/5)∑(n=0~∞)[-(x-3)/5]^n
(x+1)^3-3(x+1)^2+(x+1)+5
1/(2+x)=1/(2+3+x-3)=1/5(1+(x-3)/5)=(1/5)*∑(-1)^n((x-3)/5)^n=(1/5)*∑(-1)^n(x-3)^n/5^nn从0到∞
有f(x)=1/(2+3x)=1/5·1/{1-[-3(x-1)/5]}又因为1/(1-x)=1+x+x^2+x^3+···+x^n+···(-1
就是先化成部分分式:令f(x)=x/[(x-3)(x+1)]=a/(x-3)+b/(x+1)去分母得:x=a(x+1)+b(x-3)即x=(a+b)x+a-3b对比系数得:a+b=1,a-3b=0两式
f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)
先设f(x)=(x-4)*4+a(x-4)*3+b(x-4)*2+c(x-4)+d展开后雨原表达式对比系数,求出abcd然后再对(x-4)求导即可.
表述有误,更正!再问:展开后不含x²、x的3次方的项再答:(1)由题,列式关于p和q的二元一次方程组(-2+p)=0和(-3-2p+q)=0得p=2,q=7(2)结合(1)a^m=2,a^n
为方便,记t=x+3f(x)=1/[(x+1)(x+2)]=1/(x+1)-1/(x+2)=1/(x+3-2)-1/(x+3-1)=1/(t-2)+1/(1-t)=-0.5/(1-t/2)+1/(1-
F(X)=3/(X^2+X-2)=1/(X-1)-1/(X2)=-1/(1-X)-1/2*1/(1+X/2)函数1/(1-x)和1/1+x是一个公式,以及所述第二开关的xx/2.代入公式即可.收敛区域
将f(x)分f(x)=2[1/(x-3)+1/(x+1)]=2[-1/3*1/(1-x/3)+1/(1-(-x))]=-2/3求和(-x/3)^n+2求和(-x)^n
最高次是x^4所以可以展开成f(x)=a0+a1(x-4)+a2(x-4)^2+a3(x-4)^3+a4(x-4)^4=x^4-5x^3+x^2-3x把x=4代入可以得到a0=-60,a0=-60然后
原式=ln(1+x)+ln(1+x^2)=sigma[(-1)^n*x^n/n!]+sigma[(-1)^n*(x^2)^n/n!]=sigma{(-1)^n*[x^n+x^(2n)]/n!}其中,s