二阶矩阵A=1 1 0 1能否相似与对角阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:05:47
二阶矩阵A=1 1 0 1能否相似与对角阵
设2阶矩阵A相似于矩阵B=(2,0 2,-3) E为2阶单位矩阵 则与矩阵E-A相似的矩阵是

因为A与B相似所以存在可逆矩阵P,满足P^-1AP=B所以与E-A相似的矩阵是:P^-1(E-A)P=P^-1EP-P^-1AP=E-B=-10-24

设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

刘老师,已知n阶矩阵A与上三角矩阵B=(bij)nxn相似,则A的特征值为?

相似矩阵有相同的特征值.所以A的特征值即B的特征值.又对角阵和上三角阵(或下三角阵)的特征值为对角元素.所以A的特征值为B的对角元素Bii

矩阵相似的充分条件已知矩阵A=1 2 0 3那么下列与A相似的矩阵有.以上是原题,答案说,二阶矩阵A有两个不同的特征值1

虽然A和B的特征值相同是A相似于B的必要不充分条件,但是要注意如果A和B都没有重特征值的话这个条件就充分了.你的例子里A没有重特征值,所以一定可以对角化.再给你一个比较实用的充分条件,对于实对称矩阵而

矩阵A与B相似,

相似矩阵有相同的迹和行列式所以有tr(A)=22+x=1+4=tr(B)得x=-17再计算行列式|A|=22*(-17)-31y=-374-31y|B|=4-6=-2所以-374-31y=-2得y=-

矩阵a与矩阵b相似,且a可逆,证明矩阵b可逆以及a^-1与b^-1相似

因为A,B相似所以存在可逆矩阵P使得P^-1AP=B由于A可逆,故B可逆(同阶可逆矩阵的乘积仍为可逆矩阵)且B^-1=(P^-1AP)^-1=P^-1A^-1(P^-1)^-1=P^-1A^-1P故A

矩阵相似与合同问题n阶矩阵a和b相似,能否推出他俩合同? 如果合同能推出相似吗?

如果A和B是Hermite矩阵且相似,那么A和B合同,因为它们酉相似.实数域上类似.但是一般的域不保证.如果不是Hermite矩阵,那么相似不保证合同.无论如何合同是无法推出相似的,Hermite正定

线性代数 相似矩阵证明:如果A与B相似,则A‘与B’相似

因为A与B相似,所以存在可逆矩阵P,满足P^(-1)AP=B等式两边转置,得P'A'[P^(-1)]'=B'.因为[P^(-1)]'=(P')^(-1)所以P'A'(P')^(-1)=B'令Q=(P'

n阶矩阵A与B有相同特征值,且n个特征值互不相同能否说明A与B相似?相同的行吗?

A与B相似并不相同,理由如下:1.A与B矩阵都有n个互不相同的特征值,说明了A和B都是非退化(nondefective)矩阵,即存在非奇异矩阵Q1和Q2使得:Q1^-1*A*Q1=D1、Q2*B*Q2

设n阶矩阵A的n个特征根互异,证明:凡具有AB=BA的矩阵B必与对角矩阵相似.

先对A是对角阵的情形进行证明再把一般的情形归结为上面的特殊情形

刘老师,n阶矩阵A与对角矩阵相似时,必须满足的条件为?

必须满足A有n个线性无关的特征向量---事实上这是A可对角化的充要条件或者A的k重特征值有k个线性无关的特征向量

线性代数 ( 3 2 4 求矩阵 A= 2 0 2 的全部特征值及特征向量;并判断A能否相似于对角矩阵 4 2 3)

解:|A-λE|=3-λ242-λ2423-λc1-2c2,c3-2c2-1-λ202+2λ-λ2+2λ02-1-λr2+2r1+2r3-1-λ2008-λ002-1-λ=(-1-λ)^2(8-λ)所

线性代数:设n阶矩阵A与B相似且可逆,则|A乘B逆|=?怎么算的?

A与B相似即存在可逆矩阵PA=PBP-1|A乘B逆|=|P||B||P-1||B-1|=|P||P-1||B-1||B|=1

A^m=A,证明A与对角矩阵相似

注意到f(λ)=λ^m-λ=λΠ_{k=0}^{m-2}(λ-ζ_{m-1}^k)是A的0化多项式,其中ζ_{m-1}=exp{2πi/(m-1)}.而λ,λ-ζ_{m-1}^k(k=0,1,...,

设n阶矩阵A与B相似,证明:存在满秩矩阵Q和另一矩阵R,使得A=QR,B=RQ

因矩阵A与B相似,则存在满秩矩阵Q,使A=Q^(-1)BQ→QA=BQ设QA=BQ=R→A=Q^(-1)R,B=RQ^(-1)把Q^(-1)看成Q即可

已知二阶矩阵A的行列式为负数,证明A可以相似于对角阵.

结论仅对实矩阵成立,此时两个特征值不相等再问:那你到时证明一下实矩阵的呀?再答:不相等怎么证明再问:这是我们的作业题不会有错吧?再答:喂不管怎么样你采纳一下啊

下列矩阵能否与对角形矩阵相似?若A能与对角形矩阵相似,则求出可逆矩阵P,使得P-1AP为对角形矩阵?

1.可以.A有2个不同的特征值:7,-22.可以.A有3个不同的特征值:1,2,3再问:呵呵,详细的解答过程,谢谢!也就是说如何详细的算出特征值,特征向量,特征根等如何由这些推导出能与对角形矩阵相似,

怎么判断以下矩阵能否与对角矩阵相似

A不能B的特征多项式是(1-λ)(λ^2-3λ+1)没有重根,故可对角化