二阶矩阵A=1 1 0 1能否相似与对角阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:05:47
因为A与B相似所以存在可逆矩阵P,满足P^-1AP=B所以与E-A相似的矩阵是:P^-1(E-A)P=P^-1EP-P^-1AP=E-B=-10-24
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
相似矩阵有相同的特征值.所以A的特征值即B的特征值.又对角阵和上三角阵(或下三角阵)的特征值为对角元素.所以A的特征值为B的对角元素Bii
虽然A和B的特征值相同是A相似于B的必要不充分条件,但是要注意如果A和B都没有重特征值的话这个条件就充分了.你的例子里A没有重特征值,所以一定可以对角化.再给你一个比较实用的充分条件,对于实对称矩阵而
相似矩阵有相同的迹和行列式所以有tr(A)=22+x=1+4=tr(B)得x=-17再计算行列式|A|=22*(-17)-31y=-374-31y|B|=4-6=-2所以-374-31y=-2得y=-
因为A,B相似所以存在可逆矩阵P使得P^-1AP=B由于A可逆,故B可逆(同阶可逆矩阵的乘积仍为可逆矩阵)且B^-1=(P^-1AP)^-1=P^-1A^-1(P^-1)^-1=P^-1A^-1P故A
如果A和B是Hermite矩阵且相似,那么A和B合同,因为它们酉相似.实数域上类似.但是一般的域不保证.如果不是Hermite矩阵,那么相似不保证合同.无论如何合同是无法推出相似的,Hermite正定
P(E-A)P^-1=E-PAP^-1=E-B=[-10]所以选(D)[-2-4]
因为A与B相似,所以存在可逆矩阵P,满足P^(-1)AP=B等式两边转置,得P'A'[P^(-1)]'=B'.因为[P^(-1)]'=(P')^(-1)所以P'A'(P')^(-1)=B'令Q=(P'
A与B相似并不相同,理由如下:1.A与B矩阵都有n个互不相同的特征值,说明了A和B都是非退化(nondefective)矩阵,即存在非奇异矩阵Q1和Q2使得:Q1^-1*A*Q1=D1、Q2*B*Q2
先对A是对角阵的情形进行证明再把一般的情形归结为上面的特殊情形
必须满足A有n个线性无关的特征向量---事实上这是A可对角化的充要条件或者A的k重特征值有k个线性无关的特征向量
解:|A-λE|=3-λ242-λ2423-λc1-2c2,c3-2c2-1-λ202+2λ-λ2+2λ02-1-λr2+2r1+2r3-1-λ2008-λ002-1-λ=(-1-λ)^2(8-λ)所
A与B相似即存在可逆矩阵PA=PBP-1|A乘B逆|=|P||B||P-1||B-1|=|P||P-1||B-1||B|=1
注意到f(λ)=λ^m-λ=λΠ_{k=0}^{m-2}(λ-ζ_{m-1}^k)是A的0化多项式,其中ζ_{m-1}=exp{2πi/(m-1)}.而λ,λ-ζ_{m-1}^k(k=0,1,...,
因矩阵A与B相似,则存在满秩矩阵Q,使A=Q^(-1)BQ→QA=BQ设QA=BQ=R→A=Q^(-1)R,B=RQ^(-1)把Q^(-1)看成Q即可
结论仅对实矩阵成立,此时两个特征值不相等再问:那你到时证明一下实矩阵的呀?再答:不相等怎么证明再问:这是我们的作业题不会有错吧?再答:喂不管怎么样你采纳一下啊
1.可以.A有2个不同的特征值:7,-22.可以.A有3个不同的特征值:1,2,3再问:呵呵,详细的解答过程,谢谢!也就是说如何详细的算出特征值,特征向量,特征根等如何由这些推导出能与对角形矩阵相似,
A不能B的特征多项式是(1-λ)(λ^2-3λ+1)没有重根,故可对角化