二阶导数中dt咋没有的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:02:58
F(X)的二阶导数为f(X).F(x)=)∫a到xxf(t)dt-∫a到xtf(t)dt,那么F(X)的一阶导数就是∫a到xf(t)dt+xf(x)-xf(x)=∫a到xf(t),从而F(X)的二阶导
一个求导的算子或者函数,单独看没有意义,必须把它作用到某一个一元函数上去.比如d(1+t)/dt表示的就是1+t对t求导
高等数学“微分”符号.表示单位时间电流的变化率.
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率.在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的.
1)首先(0,x)∫f(t)dt是一个变上限积分,可以看成h(x)2)设∫f(t)dt=F(x)+C的话,则h(x)=(0,x)∫f(t)dt=F(x)-F(0)两边求导,得h‘(x)=F’(x)=f
求导F'(x)=F(1-x)变换变量F'(1-x)=F(x)在对F'(x)=F(1-x)求导F''(x)=-F'(1-x)=-F(x)解得F(x)=Acosx+Bsinx∵F(0)=1,F'(1)=F
一阶导dy/dx=-1/t.所以二阶导为d(dy/dx)/dt除以dx/dt得到的结果为1/t^3.注意算二阶导就是算一阶导的导,这时候和算一阶导是一样的,要除以dx/dt.
dy/dx=-Fx/Fyd²y/dx²=d/dx(dy/dx)=d/dx(-Fx/Fy)=-[Fxx*1+Fxy*(dy/dx)-Fx(Fyx*1+Fyy*(dy/dx)]/F
简单来说,一阶导数是自变量的变化率,二阶导数就是一阶导数的变化率,也就是一阶导数变化率的变化率.连续函数的一阶导数就是相应的切线斜率.一阶导数大于0,则递增;一阶倒数小于0,则递减;一阶导数等于0,则
是变上限的积分求导吧!则(d∫(0,x)tf(t)dt/dx)'=xf(x)再问:那要是d/dx∫xf(t)dt积分的导数是把x当作常数么?再答:对啊!把x提出去,再用乘积求导即可.d/dx∫(0,x
哪个章节的啊,细体?再问:第一章再答:应该是有方向的而且是瞬时速度的矢量
意义如下:(1)斜线斜率变化的速度(2)函数的凹凸性.关于你的补充:二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率.在图形上,它主要表现函数
1.y'=x^2(2^x)'+(2^x)*2x=x^2*2^x*ln2+(2^x)*2xy''=(x^2*2^x*ln2+(2^x)*2x)*ln2+2x(2^x)ln2+2^x*22.y'=e^xc
g(x)=∫(x-t)f(t)dt(从0到x)=∫xf(t)dt-∫tf(t)dt=x∫f(t)dt-∫tf(t)dt求导:G(x)=∫f(t)dt+xf(x)-xf(x)=∫f(t)dt(从0到x)
再答:
y=0.5*[ln(1-x)-ln(1+x^2)]y'=0.5*[1/(x-1)-2x/(x^2+1)]哦,不好意思y''=(x^2-1)/[(x^2+1)^2]-1/[2*(x-1)^2]还用再进一
>> syms x>> y=x*exp(-x)*sin(x);>> y1=diff(y,x);>> y
这么来理y'=dy/dx=(dy/dt)/(dx/dt)y"=d(y')/dx=d(y')/dt/(dx/dt)d表示微分,dy表示对y微分,dx表示对x微分,dt表示对t微分而导数看成是两个微分的商
y=lntanxdy/dx=d(lntanx)/d(tanx)*d(tanx)/dx=1/tanx*sec²x=2csc(2x)d²y/dx²=2*dcsc(2x)/d(
拐点就是说凹凸性的.类似的一阶导数等于零的情况.如果左右符号一样是不能称为拐点的.以我目前所知是没有反例的.