(xy) (1-e-xy)的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:45:54
分子、分母同乘以√(2-e^xy)+1分母变成1-e^xy分子变成xy(√(2-e^xy)+1)再问:然后呢?还是不知道结果呀,麻烦大哥说详细点咯再答:令1-e^xy=-txy=ln(t+1)x,y分
对f'x=2x-y+9=0求y的导数-->f'xy=-1或对f'y=-x+2y-6=0求x的导数-->f'yx=-1∴f'xy=f'yx=-1再问:再问:y/x求x的偏导详细过程呢
lim(x,y)→(0,0)[1-cos(xy)]/xy^2=lim(x,y)→(0,0)(x²y²/2)/xy^2..=lim(x,y)→(0,0)x=0再问:[1-cos(xy
xdy=(y+xy)dxdy/y=((1+x)/x)dxln|y|=ln|x|+x+cy=±e^(ln|x|+x+c)其中c是常数再问:真还不理解我们是选择题:y=cxe^xy=c+x-x^2y=cs
3xy-[2xy-2(xy-2分之3xy)+xy]+3xy=6xy-[2xy-2xy+3xy+xy)=6xy-4xy=2xy=2×3×3分之1=2
该题为隐函数求导.xy+e^(xy)=1则y+xy'+e^(xy)(y+xy')=0解得:y'=-y/x解答完毕.
即对x求导嘛.即(a*b)'=a'*b+a*b',上式a=x,b=e^-xy,x'=1,e^-xy=-y*e^-xy,整理就得结果啦
令xy=t,则xy/(1-e^xy)=t/(1-e^t),满足洛必塔法则条件,当(x.y)→(0,0)时,limxy/(1-e^xy)=limt/(1-e^t)=lim1/(—e^t)=—1
感觉从左式不能推导出右式,猜测:是不是错误地使用了什么方法,比如洛必达法则?再问:右式是左式推出来的,就是看不懂啊
利用幂级数在点 (0,0) 的展开式:e^xy=1+xy+x²y²/2!+x³y³/3!+.略去二次项及更高次项无穷小,得 e^x
设√(xy+1)=u,则xy=u^2-1,当x、y趋于零时u趋于1,故(3xy)/〔(√(xy+1)-1〕=3(u^2-1)/(u-1)=3(u+1),所以当x、y趋于零时(3xy)/〔(√(xy+1
两边求导:e^(xy)*(xy)'-(xy)'=0e^(xy)*(y+xy')-(y+xy')=0ye^(xy)+xe^(xy)*y'=y+xy'x(e^(xy)-1)y'=y(1-e^(xy))y'
两边同时求导..得:y-e^xy(yx')=0x'=y/(ye^xy)所以dy/dx=y/(ye^xy)
[1-cos(x^2+y^2)]~0.5(x^2+y^2)^2e^xy*(x^2+y^2)~(x^2+y^2)所以答案是0
经济数学团队帮你解答,有不清楚请追问.请及时评价.
分子分母同乘以√(xy+1)+1,则分子变为:xy分母变为:(x+y)[√(xy+1)+1]其中:[√(xy+1)+1]的极限存在下面只需证明limxy/(x+y)极限不存在即可.取两条特殊路线:1、
lim[x-->0,y-->0]xy/(√(2-e^(xy))-1)分母有理化=lim[x-->0,y-->0]xy(√(2-e^(xy))+1)/(2-e^(xy)-1)=lim[x-->0,y--