二重积分∫dx∫f(arctany x)dy在极坐标系中表示为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:16:36
交换后的积分区域为0再问:那个第二个下限是e^y,上线是e是吗??再答:对的区间(e^y,e)再问:太感谢啦!
原式=∫f'(y)dy∫dx/√[(a-x)(x-y)](交换积分顺序)=2∫f'(y)dy∫dt/(t²+1)(设√[(x-y)/(a-x)]=t,当x=y时,t=0.当x=a时,t=+∞
原式=∫dy∫e^(-y²/2)dx(作积分顺序变换)=∫(1-y²)e^(-y²/2)dy=∫e^(-y²/2)dy-∫y²e^(-y²/
F(t)=∫(上限t下限1)d(y)∫(上限t下限y)f(x)dx,先交换积分限积分域为:y
区域由y=0,y=1,x=y,x=1围成,画个图.交换次序后是∫(上限1,下限0)dx∫(上限x,下限0)f(x,y)dy
∫dy∫e^(-x^2)dx=-∫dy∫e^(-x^2)dx=-∫dx∫e^(-x^2)dy=-∫e^(-x^2)dx∫dy=-∫xe^(-x^2)dx=1/2e^(-x^2)=1/2(e^(-1)-
∫(x=1→3)dx∫(y=x-1→2)e^(y²)dy交换积分次序:dydx→dxdyx=1到x=3,y=x-1到y=2y=0到y=2,x=1到x=y+1=∫(y=0→2)e^(y
交换积分次序:∫[0,1]dx∫[x,√x]siny/ydy=∫[0,1]dy∫[y²--->y]siny/ydx=∫[0,1](siny/y)(y-y²)dy=∫[0,1](si
∫(0->1)dx∫(x^2->x)(x^2+y^2)^(-1/2)dy=∫[0->π/4]dθ∫[0->sinθ/cos²θ](1/r)*rdr=∫[0->π/4]dθ∫[0->sinθ/
没有验算,请自己检验结果.
交换积分次序:∫(0,2)dx∫(x,2)e^(-y²)dy=∫(0,2)dy∫(0,y)e^(-y²)dx=∫(0,2)ye^(-y²)dy=(1/2)∫(0,2)e^
∫(0→1)dx∫(x→1)(siny)/ydy,交换积分次序=∫(0→1)(siny)/ydy∫(0→y)dx=∫(0→1)(siny)/y·ydy=∫(0→1)sinydy=-cosy:[0→1]
如图,有不清楚请追问.请及时评价.
∫e^(-x^2)dx=∫e^(-y^2)dy而∫e^(-x^2)dx*∫e^(-y^2)dy=∫∫e^(-y^2)*e^(-x^2)dxdy=∫∫e^(-x^2-y^2)dxdy然后是用极坐标换元,
∫dx∫f(x)f(y)dy=∫f(x)dx∫f(y)dy=∫[f(x)∫f(y)dy]dx=∫[∫f(y)dy]d[∫f(y)dy]凑微分,(从左到右)第二个积分上限是1,下限是x;第三个积分上限是
积分区域:y=0和y=√(2x-x²)围成的区域化为极坐标:∫dθ∫f(rcosθ,rsinθ)*rdr再问:图不是个半圆吗为什么不是∫再答:画图看看就知道了是第一象限的半圆
这个没必要化成极坐标啊真要化,结果应该是再问:过程别抄个结果下来糊弄再答:方法:
这是常识,具体积分时就是按照先积一个变量,再积另一个变量的方式计算,这种写法无需证明,常识而已.∫∫f(x,y))dσ当然也可以写作∫dy∫f(x,y)dx
lnx应为lny吧?区域由y=1,y=e,x=0,x=lny围成,画图.交点向x轴投影,得[0,1],此为x的范围.[0,1]内任取一点,作x轴的垂线,与区域的边界的交点的纵坐标是e^x与e,e^x在