二重积分xy³

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:04:33
二重积分xy³
二重积分计算

先发一半.剩下的我慢慢算.因为确实不好积再问:嗯再答:我这有个思路。你也试试,当然我最后肯定给你做出答案,就是觉得这个题出的不好。简直是考察不定积分能力再问:极坐标做的。。再问:我应该直接表上去。这是

高等数学二重积分求区域A的体积V,其中A由z=xy,x²+y²=a²,z=0围成.最好详细

体积V即以闭域D:x²+y²=a²为底,z=f(x,y)为曲顶的立体的体积∴V=∫∫(D)zdxdy其中D={(x,y)|x²+y²=a²}

高数 二重积分的应用求曲面Rz=xy包含在圆柱x^2+y^2=R^2,(R>0)内部那部分面积.

z=xy/R.Zx′=y/R.Zy′=x/R.S=∫∫[D]√(1+(y/R)²+(x/R)²)dxdyD:x²+y²≤R².用极坐标.S=(1/R)

二重积分, 

I=∫dx∫dy/(1+x+y)=∫dx[ln(1+x+y)]=∫[ln2-ln(1+x)]dx=ln2-∫ln(1+x)dx=ln2-[xln(1+x)]+∫x/(1+x)dx=0+∫[1-1/(1

高数二重积分 如图,我算的结果是是a选项里边的函数加上xy,求解释.

要输入符号,等下再答:∬(xy+cosxsinydxdy)用y=-x分成2个积分:=∫(-a,0)dx∫(x,-x)(xy+cosxsiny)dy+∫(0,a)dy∫(-y,y)(xy+c

微积分二重积分的应用:求立体的体积 求由曲面z=xy,x+y+z=1,z=0所围成立体的体积.

借用下:求两个曲面z=2-4x^2-9y^2与z=√(4x^2+9y^2)所围立体的体积V设x=rcosθ/2,y=rsinθ/3,r>0,则原来的两个曲面方程化为z=2-r²,z=r,它们

求二重积分∫∫D x^2*ye^xy dxdy D:0≤x≤1,0≤y≤2

先对y积分,后对x积分.=积分(从0到1)dx积分(从0到2)x^2ye^(xy)dy,对y的积分做变量替换xy=t,=积分(从0到1)dx积分(从0到2x)te^tdt=积分(从0到1)dx(te^

计算二重积分∫∫(X/1+XY)dxdy,D=[0,1]*[0,1]

【数学之美】团队为你解答,如果解决问题请采纳.

二重积分  

经济数学团队帮你解答,有不清楚请追问.请及时评价.

二重积分,被积函数是max{(xy),1},积分区域是0

过点(1,1)向x轴、y轴作垂线段,连同曲线xy=1将正方形分成四个区域,分别积分即可.原式=∫[0,1]∫[0,1]dydx+∫[1,2]∫[0,1/x]dydx+∫[1,2]∫[0,1/y]dxd

二重积分的轮换对称性中 被积函数中有XY项的不能使用?

可以用呀,难道xy不等于1/2(xy+yx)吗,只是没有意义.积分区域交换x、y位置不改变积分区域就可以而且重要的一点是积分函数要变的话应该各项整体变动要是积分函数中含有xy乘积的项变换就没有什么意义

利用二重积分求体积利用二重积分求z=9-x^2-4y^2与xy平面围成的立体的体积,

楼上错了z=9-x^2-4y^2与xy平面围成的立体即z=9-x^2-4y^2>=0x^2+4y^2

计算二重积分z=∫(1,-1)∫(1,0)(e^(xy)-2xy)dxdy 用MATLAB程序编写

可以使用符号函数,比如:%Bylyqmathclc;clearall;closeall;symsxyeq=exp(x*y)-2*x*y;z=int(int(eq,x,1,0),y,-1,1);vpa(

二重积分啊!求二重积分

再问:求大神讲解下那个积分的上下限是怎么算出来的,,本人菜鸟啊,,,再答:对于直角坐标来说下方的函数为下限,上方的函数为上限对于极坐标来说若区域是只由一条曲线围成,则r的范围:下限是原点,上限是该曲线

求二重积分XY+COSX*sinY在(1,1)(-1,1)(-1,-1)为顶点三角形的D积分过程

将积分区域沿中间分为两部分D1:关于y对称的区域D2:关于x对称的区域通过奇偶性的分析,XY+COSX*sinY在D2的积分为0【关于y的奇函数】同样的,xy在D1上的积分也是0【关于x的奇函数】只需

二重积分

  被积函数是开口向下的椭圆抛物面,它与xoy面的交线是椭圆:4x^2+y^2=4 即 x^2+y^2/2^2=1.  如上图.易知 z=4-4x^2-y^2,当&nbs

二重积分 

本题中D为要积分的平面区域,要积分的函数为f(x)=1,所以其真正含义是积分区间D的面积,答案是积分区域D的面积,πr的平方.如果f(x)是一个表达式,就得按部就班的按照积分的方法算了,上面的这个只是