二重极限lim(x^2 y^2)sin1 xy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:09:56
lim[xy/(1+x^2+y^2)],x→0,y→0令x=pcosa,y=psina,p->0所以原式=lim(p->0)p²cosasina/(1+p²)=0
你可以先求这个极限的倒数发现是0那么你可以得到这个就是1/0这个当然是无穷大.再问:答案是这再答:对的对的你提醒了我这类题目要考虑左极限和右极限答案是更加准确的。
当a=0时,极限为0,当a≠0时,将y=a带入,求关于x的极限,可由洛必达法则求
f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-
您没限制x的取向,所以要分情况;123再问:忘打了。。X➡2+X➡2-单侧极限再答:没有极限,叫无穷;有三种情况:一般,极限,无穷;画出来属于无穷
沿y=x从x>0的方向趋于原点时,表达式极限为0;沿y=-x+x^2从x>0的方向趋于原点时,表达式极限为-1.因此没有极限.
再问:请问您是不是有《大学数学习题册》的答案呀?可不可以发给我呀?我邮箱qf9292@163.com再答:真对不起,我没有。这题是我自己做出来的。
(1)令(x,y)沿y=kx趋近于(0,0),则Lim((x,y)→(0,0))x+y/x-y=Lim((x,y)→(0,0))x+kx/x-kx=kk取不同值则极限也不同,所以极限不存在.(2)极限
任取ε>0,取δ=ε/7,当0
令u=xy,则原式=lim(√(u+1)-1)/u=lim((u+1)-1)/[u·(√(u+1)+1)]=limu/[u·(√(u+1)+1)]=lim1/(√(u+1)+1)=1/2
这个式子在(1,2)连续所以极限=(1+4)/2=5/2再问:可以写写计算的过程吗。再答:就是这个啊因为连续,所以可以直接代入
极限不存在吧x=ky时(k大于0)极限值与x=y^2时极限值不相等所以极限不存在对于多元函数要使得极限存在必须是从各个方向趋近极限值都一样.再问:答案极限为零主要是式子外面还有个X^2是那个式子的指数
若x+无穷=y+无穷[(x^2)/(2x^2)]^(x^2)=(1/2)^(x^2)=0
求极限lim(x,y)→(+∞,+∞)[(xy)/(x²+y²)]^(xy)[(xy)/(x+y)²]^(xy)≦[(xy)/(x²+y²)]^(xy
题目不完整.缺x趋向?
结果应该是C1x+C2+1/2y*log(x^2+y^2)+x*atan(y/x)希望采纳
lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y
是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对
lim[x→0y→0][x^2+y^2+5/(x+y)sin(x+y)]=lim[x→0y→0][x^2+y^2]+5lim[x→0y→0]sin(x+y)/(x+y)]=5