二次型化为标准型所用的正交变换唯一吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:34:27
二次型化为标准型所用的正交变换唯一吗
线性代数中,化二次型为标准型时,求所用的正交变换,有的题直接算出来的特征向量就是一个正交矩阵,有的则需要将特征向量组单位

1,如果题目是用正交矩阵化为对角阵,矩阵p都要单位化,如果题目只要求可逆矩阵P的时候就不需要.2,如果矩阵特征值不同,不需要正交化;特征值有重根,看解向量是不是正交,不是还需要正交化.再问:谢谢啦

怎样求二次型化为标准型过程之中所用的正交变换矩阵

由二次型的矩阵求出对应的特征值和特征向量,把特征向量正交化,然后再单位化,得到的向量构成的矩阵就是所用的正交变换矩阵.

化二次型为标准型求出原矩阵的特征值不就可以化为标准型了吗?为什么还要构造一个正交阵,也没用上啊?

能做这道题的,应该是数学系学习高等代数的.而且已经不是第一学期了.如果是非数学专业,应该是相当好的学校的重要理工科.因此,我只是说思路,首先,根据现行空间分解理论(现行空间可以按照特征值分解成根子空间

线性代数 由二次型化为标准型,什么情况需要单位化正交化,什么时候不用?

看特征值1)如果求出的特征值都是单根,则这些特征值的特征向量都是彼此正交的(有定理),此时只需分别单位化即可.2)如果求出的特征值中有重根,则这些特征值的特征向量之间不一定正交,此时需进行单位正交化.

求二次型 ,(1)写出二次型的矩阵A; (2)求一个正交变换化二次型为标准型;

 (2)求A的特征值和特征向量特征向量.把特征向量正交化单位化,然后构成正交矩阵,极为所求.这个就自己动手吧.(3)看特特征值的符号判断是不是正定二次型.再问:

用正交变换化二次型为标准型,并写出所做的线性变换

估计题目有误手工连特征值都不好求PS.这类题目最好加悬赏,费劲...

线性代数 二次型化为标准型的问题

画红线上面的那个矩阵就是X=PY矩阵形式,最后得出的二次型,y前面的系数其实是前面二次型矩阵所对应的四个特征值-1,1,1,1.这种题一般都会要求你既写出最后化成的标准型,也要写出那个变换.红线上面的

线性代数:利用正交变换法将二次型化为标准型的问题

因为标准型依赖的是变换矩阵也就是Q,标准型对应的矩阵不是唯一的,元素的位置可以互换,但是对应的Q就不一样了,所以再写出标准型时,是需要求出Q的若你还有不会的,我十分愿意和你探讨,

写出对称矩阵A 的二次型 并用正交变换将该二次型转化为标准型

二次型f(x1,x2,x3)=2x1^2+x2^2-4x1x2-4x2x3则P=(a1,a2,a3)是正交矩阵作正交线性变换X=PY则二次型f=y1^2+4Y2^2-2y3^2

大学线性代数二次型中最后正交变换x=cy得出标准型,怎么算出来那个形式的 我知道如果用正交法的话标准型的系数是特征值 那

1怎么算出哪个形式:求特征向量然后施密特正交化2配方法出来的会是规范形,3是的

线性代数 二次型正交化为标准型必须求特征向量么?只求特征值直接写出标准型会扣分么?

若让用正交变换化二次型,一般会让求出相应的正交变换X=PY,P为正交矩阵由于正交矩阵由A的n个正交的特征向量构成所以求特征值和特征向量是必要的

线性代数正交变换法二次型化为标准型为什么要那么麻烦呢,不是特征值直接就是变换后方程的系数吗?

有了这个麻烦的过程,才有了以特征值为系数的式子啊何来结果?只有搞懂机理,才能对结果有更深的认识,如果结果有什么问题,也容易查找.关键是看题目要求,如果只是让你求出二次型的标准型,知道了特征值,直接写出

用配方法把二次型2x3^2-2x1x2+2x1x3-2x2x3化为标准型,并写出所用坐标变换.疑问如下

y的个数与x的个数相同,因为x1,x2,x3是三个,因此y也是三个.y1=x1并不是必须的,设成什么都可以,但有个要求,必须使得y和x之间的过渡矩阵是一个可逆矩阵.只要可逆,设成什么都可以,y1=x1

f(x1,x2,x3)=2x1x2+2x1x3+2x2x3,求一正交变换x=py,将此二次型化为标准型.那是X

f(x1,x2,x3)=2x1x2+2x1x3+2x2x3对应的实对称矩阵为A=[(0,1,1)T,(1,0,1)T,(1,1,0)T];下面将其对角化:先求A的特征值,由|kE-A|=|(k,-1,

求一个正交变换x=py使二次型f=2x1^2+3x2^2+3x3^2+4x2x3化为标准型

二次型的矩阵A=200032023|A-λE|=2-λ0003-λ2023-λ=(2-λ)[(3-λ)^2-2^2]=(1-λ)(2-λ)(5-λ).所以A的特征值为1,2,5.(A-E)X=0的基础

求一个正交变换x=Py,使二次型5(X1,X2,xX3)=2X1^2+3X3^2+4X2*X3化为标准型

二次型的矩阵A=200002023|A-λE|=2-λ000-λ2023-λ=-(λ-2)(λ-4)(λ+1)特征值为λ1=2,λ1=4,λ1=-1A-2E=0000-22021-->00000101

大学线性代数的行列式,列如给你一个二次型函数,叫你用正交变换法化为标准型,我可以列出二次型矩阵以及det(λI-A)的行

一般方法是:利用行列式的性质,尽量提出λ的一个因式例如:1-λ2321-λ3336-λr2-r1,之后再c1+c2,得3-λ230-1-λ0636-λ