二元极限0比0型

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:26:41
二元极限0比0型
用罗比塔法则求极限极限趋于0(e^x-1)/(x^2-x)

分子分母分别求导,等于e^x/2x-1等于-1.

二元函数 (xy)/(x+y)当x,y趋近于0时的极限为什么不存在?

令y=x,lim(x,y)趋于(0,0)xy/x+y=lim(x趋于0)x^2/(2x)=0令y=x^2-x,lim(x,y)趋于(0,0)xy/x+y=lim(x趋于0)x^3-x^2/x^2=-1

高数 二元函数求极限二元函数求极限设y=kx的条件是什么?是x,y都趋于0吗?

只需要x趋向于某个值m时,y趋向于km,就可以设y=kx想,x,y都趋向于0只是一种特殊情况而已,而且比较常见再问:那x趋于1,y趋于0的时候是不是不能这么设呢再答:不能,判断极限是否存在是看结果中是

二元函数的极限问题.

再问:看懂了

0比0型函数用什么定理求极限

洛必达法则.等价无穷小替换.还有泰勒公式都是经常用到的再问:太牛X了

二元函数求极限3-√9+xy------------xyx.y均趋进于0中间那条虚线暂代分数线

这个应该没有极限,如果有极限,则沿着任何方向极限应该相同.我们取x=y方向逼进,则极限变成一元极限,很显然当xy->0时,分母为0,分子不为0,这种情况必然没有极限再想想,肯定时楼主输入时没有注意加括

求二元函数极限

解题思路:利用换元法,归结为重要极限 (sinx)/x→1.解题过程:求二元函数的极限:【方法提示】:本题用到重要极限:解:当x→0且y→2时,有xy→0,令xy=t,则【变式题】:求二元函数的极限:

二元函数 求极限

x^2+y^2>=2xy所以0

二元函数求极限:lim sin(x^2+y)/(x^2+y^2) x→0,y→0

题目有问题.无解应该有个条件,沿xxx曲线趋近与(0,0)再问:二元函数求极限:limsin(x^2*y)/(x^2+y^2)x→0,y→0不好意思,麻烦了有个符号错了再答:还是无解,除非第一个括号是

二元函数求极限:lim (sin(x^2+y)) / (x^2+y^2) x→0,y→0

=lim(x²y)/(x²+y²)【等价无穷小代换:当u→0时,sinu】=limy/(1+(y/x)²)令y=kx,则y/x=k.原极限=limy/(1+k&

求二元函数0比0型求极限任意例题一道

Limx^3y+xy^4+x^2y/x+y,x→0,y→0再问:有解题过程吗再答:Limx^3y+xy^4+x^2y/x+y=Limx^3(x^3-x)+x(x^3-x)^4+x^2(x^3-x)/x

二元函数求极限一题!lim ln(x+e^y)/sqrt(x^2 + y^2)(x,y)->(1,0)

首先可以看出这个极限一定存在.在存在的情况下,可以用分次求极限的方法来做:原式=lim(x→1)(y→0)ln(x+e^y)/sqrt(x²+y²)=lim(y→0)ln(1+e^

二元函数的极限问题请问大家最后是怎么推导出极限为∞的?为什么当y从趋向于x 和-x时候的极限都为0就知道函数的极限为∞?

楼主没有看清楚题目哦,看看沿y=-x时题目所求的是原式子的倒数的极限哦,那原式的极限就是0的倒数,也就是无穷大!两种情况的极限不一样,所以该极限不存在的!

[高等数学]:微分方程,二元极限

第一道题并不是难,而是计算比较麻烦,第二道题稍微难些由(x²+xy)dx-y²dy=0化为dy/dx=(x/y)²+x/y(1)设y/x=uy=ux则dy/dx=u+xd

二元函数求极限,分子为2-根号下(x+4),分母为xy,xy均趋向于0

分子分母同乘2+根号下(x+4),化简为分子为-1,分母为y乘以2+根号下(x+4),可见极限为无穷大.