二元函数xy (x² y²)在(0,0)处
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:02:56
令y=x,lim(x,y)趋于(0,0)xy/x+y=lim(x趋于0)x^2/(2x)=0令y=x^2-x,lim(x,y)趋于(0,0)xy/x+y=lim(x趋于0)x^3-x^2/x^2=-1
如果上述二元函数在(x,y)趋近(0,0)时的极限存在则要求以任何路径趋近都要极限存在.显然我们只要找到存在一条路劲使得该函数的极限不存在即可.观察函数发现上下均为二次,我们只要凑出1/∞即可,取路径
极限存在的条件是(x,y)以任何方式靠近(0,0)极限都相等所以证明极限不存在就是找两种不同的方式,使得极限不相等证明如下:取x=y,f(x,y)=x^2/2x=x/2显然极限=0/2=0又取x=-y
再问:最后两步是怎么变得呢,没看懂。。再答:x趋于0时,√(1+x)-1~x/2这里是等价无穷小
你们是学的英文版的高数吗?既然都会翻译了,这道题目本身不难了,1.由题意直接可得X=Z+W,Y=Z-W,将这两个式子,代入到区域D的表示形式中,由0≤x+y≤10,0≤x-y≤96变成0≤2Z≤10,
x+2y=4x=4-2yf(x,y)=x^2+y^2+xy=(4-2y)^2+y^2+y(4-2y)=3y^2-12y+16=3(y-2)^2+4所以当y=2时,极小值为f(x,y)=4没有极大值
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
设a=xy,b=x+y.f(xy,x+y)=x^2+y^2+2xy-2xy=(x+y)^2-2xy把a,b带f(a,b)=b^2-2a所以f(x,y)=y^2-2x同理f(x+y,xy)=x^2+y^
z对x求偏导=y-50/x^2z对y求偏导=x-20/y^2为求极值,要使y-50/x^2=0且x-20/y^2=0因为x>0,y>0解得x=5,y=2因为x,y->无穷大的时候,z
s=x+y,t=x-yx=(s+t)/2,y=(s-t)/2f(x+y,x-y)=xy+y^2=y(x+y)=[(s-t)/2]*sf(s,t)=(s^2-st)/2f(x,y)=(x^2-xy)/2
感觉从左式不能推导出右式,猜测:是不是错误地使用了什么方法,比如洛必达法则?再问:右式是左式推出来的,就是看不懂啊
x+2y=4x=4-2y代入方程得f(4-2y,y)=(4-2y)^2+y^2+y(4-2y)=16-16y+4y^2+y^2+4y-2y^2=3y^2-12y+16=3(y^2-4y)+16=3(y
应该是c吧可微必连续,必可导.因为偏导是对xy两个方向求导,所以偏导数存在则切平面必存在.在一点的偏导存在,并不能说明偏导数连续.故C错
f'x=(y·(x+y^2)-xy)/(x+y^2)²=y³/(x+y^2)²,则f'x(1,1)=1/4fy=(x·(x+y^2)-(xy)·2y)/(x+y^2)
f(x,0)=0,所以在(0,0),Fx=0同理,在(0.0),Fy=0即偏导存在.令x=0,则当y-->0时,limz=0令x=y,则当x-->0,y-->0时,limz=1/2(0.0)处极限不唯
这道题可以有两种解法:(1).用最基本的二次函数,令x=4d-2y,代入二元函数并消去x得,F(y)=(4d-2y)^2+y^2+y*(4d-2y)=3(y-2d)^2+4d^2因此,当y=2d时,函
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
.24、二次函数y=-2x2+4x-3的图象的开口向;顶点是.25、1、将-x4+x2y2因式分解正确的是()A、-x2(x2+y2)B、-x2(
答:f(x,y)=3xy/(x^2+y^2)f(y/x,1)=3*(y/x)*1/[(y/x)^2+1^2]=(3y/x)/[(y^2+x^2)/x^2]=3xy/(x^2+y^2)=f(x,y)x≠
取对数,得ln(2+xy)/(y+xy^2).(x,y)→(2,-1/2),所以xy→-1,所以ln(2+xy)是无穷小,等价于1+xy.所以,limln(2+xy)/(y+xy^2)=lim(1+x