事件A与事件B相互独立的充要条件为P(A B) P(A反 B反)=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:56:31
相互对立=互不相容独立与否跟互不相容无关
当A,B独立时,有P(AB)=P(A)P(B),因为0
如果事件A,B相互独立,那么(非A),B也相互独立.证明:P(非A)=1-P(A)-----(1)P(B)=P{B(A+(非A))}=P(AB)+P{(非A)B}=P(A)P(B)+P{(非A)B}(
由B、C独立:P(A(B+C))=P(AB)+P(AC)由A、B独立,A、C独立:P(AB)=P(A)P(B),P(AC)=P(A)P(C)于是P(A(B+C))=P(A)(P(B)+P(C))=P(
必然事件与任何事件都是相互独立的.利用事件的独立性定义证明如下:设S为必然事件,A为任一事件(即A为S的子集).于是因为AS=A,所经P(AS)=P(A)=P(A)∙1=P(A)P(S)根
P[(A+B)*C]=P(AC+BC)=P(AC)+P(BC)-P(AC*BC)=P(AC)+P(BC)-P(ABC)=P(A)*P(C)+P(B)*P(C)-P(A)*P(B)*P(C)=[P(A)
p(a+b)=P(a)+P(b)-P(ab)因为a事件与b事件相互独立,所以P(ab)=p(a)p(b)所以p(a+b)=P(a)+P(b)-p(a)p(b)
否,A、B、C、不是相互独立的(详见伯恩斯坦反例).A与B相互独立,B与C相互独立,C与A相互独立并且P(ABC)=P(A)P(B)P(C),则A、B、C相互独立.
选CP(AB)=P(A)*P(B).这个等式从数学上阐述两个事件相互独立的意义.也就是说这是相互独立的定义.
由B、C独立:P(A(B+C))=P(AB)+P(AC)由A、B独立,A、C独立:P(AB)=P(A)P(B),P(AC)=P(A)P(C)于是P(A(B+C))=P(A)(P(B)+P(C))=P(
首先说明,两个事件A,B独立当且仅当P(AB)=P(A)P(B)因为A,B,C相互独立,所以P(ABC)=P(A)P(B)P(C),P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC
根据题意,只有A发生的概率也就是说A发生且B不发生,可立式(1),同理,只有B发生的概率也就是说B发生且A不发生,可立式(2),P(A)*(1-P(B))=1/4(1)(1-P(A))*P(B)=1/
P(A)*P(B)再问:为什么呢再答:就是独立事件的定义:若事件A与B为相互独立事件,则P(AB)=P(A)*P(B)
篇幅有限,最后一步交叉乘过去化简就得到了.还有疑问欢迎追问.
/>∵P(A|B)=P(A|B补)∴即B发生的条件下,A发生的概率和B不发生的条件下,A发生的概率相同即A发生的概率和B是否发生没有影响,即事件A,B相互独立.
首先要知道两事件相互独立的充要条件
对再问:需要证明过程再答:P(A*B)=P(A)*P(B)设事件C为B补所以P(B|A)+P(C|A)=1,P(C)+P(B)=1P(AB)=P(A)P(B|A)P(AC)=P(A)*P(C|A)=P
独立事件:两个事件的发生相互之间没有影响.A:A与A上一横不互为独立事件【A发生也就意味着A上一横不发生】B、C:是独立事件;A上一横与B上一横是互相独立的.再答:所以,本题选【A】
设p(a)=x,p(b)=yp(非a)=1-x,p(非b)=1-y因为事件a,b相互独立,由题意则有:p(a)p(非b)=x(1-y)=x-xy=1/4p(b)p(非a)=y(1-x)=y=xy=1/