(x-2)²对球面的曲线积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:22:23
这个题目改条件后不适合用球面积分做,因为你用球面积分是为了简化问题,但是这个地方根本不可能简化,所以不要用球面积分.不过也不能完全这么说,因为你无法确定a的值和1的大小关系,如果a小于1,那么这个题目
你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲
可以通过一维正态分布的公式来推出积分的值
x²+y²+z²=2x=y∴2x²+z²=2所以L的参数方程为:x=y=cosθ,z=√2sinθ,0≤θ≤2πds=√(x'²+y'
用格林公式啊原式=∮∮4ds我怎么就等于2呢B吧
C^e^2√x2全是指数?再问:是的,可以QQ吗?再答:1073732646再问:我将题目图片发到你邮箱了,我在考场中,没有QQ,谢了再答:第一题B再问:谢了,我已经提交答卷了,不用做了,分给你吧
这是第二类曲线积分里面最简单的计算.因为书写不便,见图~
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
因为曲线L位于圆周上,所以x2+y2+z2=a2故∫L(x2+y2+z2)ds=a2∫Lds=a^2*2PI*a=2PI*a^3
把y=z代入x^2+y^2+z^2=1得x^2+2y^2=1,所以设x=cost,y=1/√2sint,所以L的参数方程是:x=cost,y=1/√2sint,z=1/√2sint,t的取值是从0到2
L为x²+y²=a²采用参数方程:x=acost,y=asint,ds=adt∮L(1+y)ds=∫(0→2π)(1+asint)*adt=a*(t-acost):(0→
将开放教育人才计划从结婚
答案:2.过程不详述了.这个积分是跟路径无关的,因为原函数是一个函数(3xxyy-xyyy)的全微分.在这种情况下,积分值等于原函数在起始点值的差.
1、你的曲面方程写错了,你写的是x+y+z=0,x+y+z=1,这是两个平行平面,没有交线;2、如果参数方程不好写,目测本题需要用Stokes公式;3、第二类曲线积分的对称性是有的,但是由于涉及曲线的
注意,参数中t的意义,t指的是圆心角,A处对应的圆心角为0O处对应的圆心角为π所以,积分范围为0→π再问:请问顺时针和逆时针有什么区别吗??还是只要规定正方向即可??再答:逆时针,积分范围为0→π顺时
所求质量M=∫[0,2π]|bsint|√[(-asint)²+(bcost)²]dt=∫[0,2π]|bsint|√[a²+(b²-a²)cos
x²+y²+z²=zx²+y²+(z-1/2)²=(1/2)⁵-->r=cosφ∫∫∫√(x²+y²+z
因为xy+yz+zx=(1/2)[(x+y+z)^2-(x^2+y^2+z^2)]=-a^2/2所以∫(xy+yz+zx)ds=∫(-a^2/2)ds=(-a^2/2)∫ds=(-a^2/2)*(2π
第2题就是积分与路径无关的条件,计算时可进行简化第3题,可直接化为三次积分再答:再答:这个就直接写吧,你画个图看看再答:再问:好的,谢谢