(x+z))dS,其中是半球面x²+y²+z²=R²,x>0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:16:52
(x+z))dS,其中是半球面x²+y²+z²=R²,x>0
求锥面z= √x^2+y^ 2与半球面 z= √ 1-x^2-y^ 2所围成的立体的体积

两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d

∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a

补平面:Σ1:z=0,x^2+y^2≤a^2,下侧,这样原曲面Σ与Σ1共同构成一个封闭曲面高斯公式:原式=∫∫∫(3x^2+3y^2+3z^2)dxdydz用球坐标=3∫[0-->2π]∫[0-->π

计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)

dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2

计算曲面积分 ∫∫(x^2+y^2+z^2)ds,其中 ∑是球面x^2+y^2+z^2=a^2(a>0)

不用那么麻烦把曲面公式代入被积函数中∫∫(x^2+y^2+z^2)ds=∫∫a^2ds=(a^2)*4πa^2=4πa^4再问:但答案是8πa^4再答:答案是4πa^4,我用不同的方法算了一遍,请看:

计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2

根据圆柱面的面积公式,ds=2πRdz把x^2+y^2=R^2带入原积分得到原积分=∫ds/(x^2+y^2+z^2)=∫(0->h)2πRdz/(R^2+z^2)=2π∫(0->h)d(z/R)/[

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分

考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ&#

3DS MAX 弧面如何修改为半球体?

你想要得到半球,你可以直接画一个球体,然后转化为网格编辑模式,选择点,框选一半的球体的然后删除,剩下的就是半球了.如果你是想由弧面编辑建议你使用FFD命令编辑,这个是细活,有点耐心

利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy ,其中∑为半球面z=√(R^2-x^2-y^2

为了利用高斯公式,将目标曲面补成封闭的曲面,且方向向外侧,最后积分值减去这一部分即可.目标曲面为半球面,补充半球面的底面部分,设为∑a.新形成的封闭曲面设为∑b.在底面时,z=0,dz=0.则:原积分

计算I=∫∫1/(x2+y2+z2)dS,S是抛物面z=x2+y2与平面z=1所围立体的外表面

dS=√(1+4x^2+4y^2)dxdy,投影:x^2+y^2《1I=∫∫1/(x^2+y^2+(x^2+y^2)^2)*√(1+4x^2+4y^2)dxdy+∫∫1/(x^2+y^2+1)*dxd

计算∫∫(z+2x+4\3y)ds,其中∑为平面x\2+y\3+z\4=1在第一卦限中的部分.

平面方程两边乘以4,得z+2x+4\3y=4,所以积分∫∫(z+2x+4\3y)ds=∫∫4ds,接下来计算平面与三坐标轴的三个交点围成的△的面积即可.方法不唯一,比如计算四面体的体积,而原点到平面的

计算∫∫(S)(x+y+z)dS,其中S为曲面x^2+y^2+z^2=a^2,z>=0

先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0

半球面分成微小宽度的环带面积ds是怎么求的,看不懂啊

令环带周长为L,则面积为Lds.ds是极小的,可以把环带的上下圆周周长看成近似相等,则把环带剪开后,可看成是一长方形的长条,此长方形面积就是环带面积,即Lds.

计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)

Σ分为两部分Σ1:z=a+√(a^2-x^2-y^2)与Σ2:z=a-√(a^2-x^2-y^2).Σ1与Σ2在xoy面上的投影区域都是D:x^2+y^2≤a^2.Σ1与Σ2上,dS=a/√(a^2-

数学曲线积分 求i=∫y²ds, 其中c是球面x²+y²+z²=r²与

由于曲线关于x,y,z具有轮换对称性,因此有:∫y²ds=∫x²ds=∫z²ds则∫y²ds=(1/3)∫(x²+y²+z²)ds

计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1

这题用高斯公式做简单,做辅助曲面S‘:z=0,则S+S'构成闭合曲面,取外侧为正.设P=(x^3+e^ysinz,Q=-3x^2y,R=z,则ðP/ðx=3x^2,ðQ/