(x y)^2 z^2 dS,其中是柱面介于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 04:12:41
(x y)^2 z^2 dS,其中是柱面介于0
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2

为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部

1.x-z/xy - 2ab/xy

1=(x-z-2ab)/xy2=(a²-2ab+b²)/a-b=(a-b)²/a-b=a-

计算I=∫T(x^2+y^2+z^2)ds其中T为曲线{x^2+y^2+z^2=a^2,x+y+z=0

曲线积分中积分曲线的方程是可以带人到积分表达式中的,因此I=∮a^2ds=a^2∮ds,而根据曲线积分的几何意义,∮ds就等于积分闭曲线的周长,由曲线的方程知积分曲线为半径等于a的圆周,其周长∮ds等

曲线积分问题.求∫根号下(2y²+z²)ds,其中积分曲线c为封闭曲线x²+y²

积分曲线就是一个大圆的圆周为了清楚我用图片写给你了,要被审核一会(请稍等几分钟,或者直接hi我)再问:麻烦你在看看这道题好么求∫x²ds,其中c为x²+y²+z²

计算∮l(y^2+2z)ds,其中l为x^2+y^2+z^2=r^2,x+y+z=0的交线

由对称性,∮xds=∮yds=∮zds,∮x^2ds=∮y^2ds=∮z^2ds所以,∮(y^2+2z)ds=1/3×∮(x^2+y^2+z^2+2x+2y+2z)ds=1/3×∮r^2ds因为平面x

计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)

dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2

计算曲面积分 ∫∫(x^2+y^2+z^2)ds,其中 ∑是球面x^2+y^2+z^2=a^2(a>0)

不用那么麻烦把曲面公式代入被积函数中∫∫(x^2+y^2+z^2)ds=∫∫a^2ds=(a^2)*4πa^2=4πa^4再问:但答案是8πa^4再答:答案是4πa^4,我用不同的方法算了一遍,请看:

计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2

根据圆柱面的面积公式,ds=2πRdz把x^2+y^2=R^2带入原积分得到原积分=∫ds/(x^2+y^2+z^2)=∫(0->h)2πRdz/(R^2+z^2)=2π∫(0->h)d(z/R)/[

计算 ∫ ∫∑(x^2+y^2)dS,其中为∑球面x^2+y^2+z^2=a^2 计算曲面积分

再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分

考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ&#

曲面积分 (x^2+y^2)dS 积分区域是z=x^2+y^2以及平面z=1围成

∫∫Σ(x²+y²)dS=∫∫Σ1(x²+y²)dS+∫∫Σ2(x²+y²)dS=∫∫D(x²+y²)√(1+4x

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域,

题目中z=0表示的就是xoy平面,画个大概的立体图容易知道,此时所求的区域在Z正半轴,Z>0,当x=y且z=xy时,x=y=0,x=1是x的积分上限,若被积区域在x>1的范围,就不能构成封闭的积分区域

计算∫∫(z+2x+4\3y)ds,其中∑为平面x\2+y\3+z\4=1在第一卦限中的部分.

平面方程两边乘以4,得z+2x+4\3y=4,所以积分∫∫(z+2x+4\3y)ds=∫∫4ds,接下来计算平面与三坐标轴的三个交点围成的△的面积即可.方法不唯一,比如计算四面体的体积,而原点到平面的

设∑是球面x^2+y^2+z^2=4,则曲面积分∮∫(x^2+y^2+z^2)dS=

面积元素ds=2/(4-x^2-y^2)^1/2dxdy∫∫(x^2+y^2+z^2)dS=x^2+y^2+z^2)dS=∫∫4.2/(4-x^2-y^2)^1/2dxdy极坐标换元:∫∫(x^2+y

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域.

累次积分,投影到xoy面上,先对Z积分,积分限(0,xy),再对y积分(0,x),x积分(0,1)=1/28*13

计算∫∫(S)(x+y+z)dS,其中S为曲面x^2+y^2+z^2=a^2,z>=0

先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0

计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)

Σ分为两部分Σ1:z=a+√(a^2-x^2-y^2)与Σ2:z=a-√(a^2-x^2-y^2).Σ1与Σ2在xoy面上的投影区域都是D:x^2+y^2≤a^2.Σ1与Σ2上,dS=a/√(a^2-