(x 4):y=2:1这个方程怎么解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:03:18
(x 4):y=2:1这个方程怎么解
求函数y=x4次方+2x平方减1 的值域

换元法,用t=x方换掉,然后配方.t的范围是大于零.y的值域就出来了

y=-x+1 这个方程的参数方程是什么

参数方程化为普通方程时,要注意参数的影响,即参数对一般方程的去值的影响,而普通方程化为参数方程,其所有参数可以任意选取的.你所写的两个都行的,你之所以不确定,主要是两个参数方程中参数的几何意义不同所致

设函数f(x)=x4-2x2+3,求曲线y=x4-2x2+3在点(2,11)处的切线方程

用点斜式,首先求斜率K,在任意一点斜率K(x)=y‘=4x3-4x当x=2,k=24,所以直线方程就是y-11=24(x-2).

设函数f(x)=X4-2X2+3 1.求曲线y=x4-2x2+3在点(2,11)处的切线方程 2.求函数f(x)的单调区

→f`(x)=3x³-4x→f`(2)=3*8-4*2=16=k→切线方程:y-11=16(x-2)(2):令f`(x)=0,→x=0,x=±2√3/3→xε(-∞,-2√3/3),f`(x

求:数函f(x)=x4-2x2+3(1)求曲线y=x4-2x2+3在点(2,11)处的切线方程我在线帮帮忙急需等着你的解

若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.  &nbs

曲线y=2x4上的点到直线y=-x-1的距离的最小值为(  )

曲线y=2x4上一点到直线y=-x-1的距离的最小值可转化为曲线与直线平行的切线和直线的距离y′=8x3令8x3=-1,解得x=-12.∴y=2×(−12)4=18.∴切点A(-12,18).y−18

X1+2X2-X3+X4=1

才零分,我打的累啊,给点分吧.增广矩阵12-11|12-312|2A=3-103|31-521|1然后第二行减去第一行2倍第三行减去第一行3倍第四行减去第一行1倍再第四行减去第二行,第三行减去第二行得

有这样一道题,计算(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2的值,其中x=0.25,y=-1;

(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2=2x4-4x3y-x2y2-2x4+4x3y+2y3+x2y2=2y3,因为化简的结果中不含x,所以原式的值与x值无关.

求解一个方程急 X(1次方)+X2+X3=5 X2+X3+X4=1 X3+X4+X5=-5 X4+X5+X1=-3 X5

5式相加,3(x1+x2+x3+x4+x5)=1+5-5-3+2=0所以x1+x2+x3+x4+x5=0X1+X2+X3=5,X4+X5+X1=-3,两式相加:X1+(X1+X2+X3+X4+X5)=

帮忙解个方程,X4次方+2X平方-1=0

X^4+2X^2-1=0(x^2-1)^2=0x^2-1=0x^2=1x=+-1

方程 【11+x】X4=74+x

4x+44=74+x3x=30x=10

lingo软件求教max=1/2*x1*x2*@sin(x4)+1/2*x2*x3*@sin(120-x4);x4>0;

x1,x2,x3有限制没有呢?还有@sin(x),x是弧度,不是角度.

解方程1- 2x-56 = 3-x4

1-2x-56=3-x4-2x+4x=3-1+562x=58x=58/2

4y(y-1)=2(y-1)用因式分解法解这个方程.

4y(y-1)-2(y-1)=0(4y-2)(y-1)=0所以4y-2=0或y-1=0所以y=1/2或y=1

解方程x4+2x3-6x2+2x+1=0

原式=(X4-2X2+1)+2*(X3-2X2+X)=(X2-1)^2+2*X(X-1)^2=(X-1)^2(X+1)^2+2*X(X-1)^2=(X-1)^2((X+1)^2+2X)=(X-1)^2

已知x1,x2,x3,x4成等比数列,且x1,x4是方程2x²+3x-1=0的两根,则x2+x3=

x1+x4=2x1+3dx2+x3=2x1+3dx2+x3=x1+x4x1,x4是方程2x²+3x-1=0的两根,由韦达定理得x1+x4=-3/2x2+x3=-3/2

(x1,x2,x3,x4,x5,x6)来自正态总体N(0,1),Y=(x1+x2+x3)^2+(x4)^2+(x5)^2

根据线性关系有:(X1+X2+X3)~N(0,3),:(X4+X5+X6)~N(0,3),所以(1/3)*[(X1+X2+X3)^2(的平方)]~X(1)(X是卡方分布符号),(1/3)*[(X4+X

方程x1+x2+x3+x4=17,有多少满足x1≥0、x2≥1、x3≥2、x4≥3的整数解?

楼上的想法比较正确,但是有错误,利用隔板法在12个空隙中插3个板,运用C(12,3)这样做忽略了两个板插在一个空隙里的情况.比如(0,1,2,3)这组解,利用这种算法就是求不出的.就是说,如果用组合算

x4次方y立方÷1/2xy平方

x四次方y³÷1/2xy²=2x四次方y³÷xy²=2x³y不懂情留言...