为什么矩阵行列式的值等于特征值的乘积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:24:58
因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.
A相似与对角矩阵!则上边的和式也相似与一个对角矩阵!两边取行列式就得到了!你试试!
把每个牲值回代就可得到特征向量.计算量太大.你自己算吧.再问:好难的说再答:计算量大,难度不大就是概念求解
求矩阵的特征值是令行列式|A-λE|=0得到了现在|A+E|=0就相当于λ=-1了
矩阵化简与否影响其行列式的特征值吗行列式是一个值了,不能说行列式的特征值.只有矩阵(方阵)有特征值,矩阵的特征值不会因为初等变换而变的.合同变换不改变矩阵的正定性,但可以改变矩阵的特征值.相似变换不改
行列式是-2,因为矩阵A和它的若尔当标准型的行列式一样.它的若尔当标准型行列式就是1*-1*2=-2
不等吧是倒数再问:1.A为三阶方阵,|A-1|=2,则|2A|=?2.如果|A|=2,则|AA*|=?再答:1.曾经会过...2.AA*=|A|E|AA*|=|2E|=8再问:第一题是|A|的逆矩阵的
n=1的时候最简单n=2的时候取两个对角元一样大的对角阵,用平均值不等式验证这时候达到最大值n>2的时候不存在最大值,因为可以让前三个对角元取成-t,-t,N+2t,余下的元素都是0,这样当t->+o
那A的阶至少是3哈再问:可以解释再清楚一点吗?再答:因为n阶方阵A的秩小于n的充分必要条件是|A|=0.所以若|A|=0,则r(A)=2
这是个定理,教材中应该有证明A的特征多项式f(λ)=|A-λE|一方面从行列式的定义分析它的λ^n,λ^(n-1)的系数及常数项另一方面f(λ)=(λ1-λ)...(λn-λ)比较λ^n,λ^(n-1
还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵
按线性代数上说,设A是n阶矩阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么,这样的数λ称为方阵A的特征值求矩阵的秩应将从第一列化成只有一个不为零的数字,若第二列也只有一个,再画阶梯时为一阶
因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘
|λI-A|=0利用这个式子求出矩阵的特征值要求矩阵的行列式那就应该是|A|而|λI-A|是要最终化成一个关于特征值的n阶多项式,令这个多项式的值为零可以求出特征值不懂可以Hi我
|λE-A|=|λ-a11-a12...-a1n||-a21λ-a22.-a2n||.||-an1-an2.λ-ann|=(λ-λ1)(λ-λ2)...(λ-λn)λ^n-(a11+a22+...+a
因为若所有的方阵可以通过相似变换得到若当标准型,例如a11a1a2a31a31a3没标的都为0显然这个矩阵的行列式为所有对角线元素,即特征值的乘积而相似变换不改变行列式,所以矩阵所有特征值的乘积等于矩
因为半正定矩阵的特征值>=0半正定矩阵是对称矩阵所以可以对角化(定理)A=P*B*P^-1|A|=|B|>=0即证
一个特征值是2/3,分析如图.经济数学团队帮你解答,请及时采纳.
应该是|A*|=|A|^(n-1)讨论一下,若r(A)=n,则AA*=|A|E,故|A||A*|=|A|^n,即|A*|=|A|^(n-1).若r(A)
-1若矩阵A的特征值为λ,则A的转置的特征值也为λ,而A的逆的特征值为1/λ.矩阵的转置即为矩阵的逆,即:λ=1/λ,所以:λ=1或-1.即正交矩阵的特征值为1或-1又行列式等于-1,所以-1一定是A