为什么三角形的三条中线可以将三角形分成相等的6部分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:45:15
1、证明三角形的三条角平分线交于一点:(1)由其中两个内角的交点向三条边作垂线段;(2)在根据角平分线的性质定理及逆定理就可获证.2、证明三角形的三条边的垂直平分线交于一点:(1)作两条边的垂直平分线
已知:△ABC中,AX,BY,CZ分别是BC,AC,AB边上的中线,求证:AX,BY,CZ相交于一点G,并且AG∶GX=2∶1X,Y分别是BC,AC的中点,所以XY=DE,所以,四边形DEXY为平行四
用向量法证明三角形ABC的三条中线交于一点P,并且对任意一点O有向量OP=1/3(向量OA+向量OB+OC向量)注意:要求用向量法,不使用坐标假设两条中线AD,BE交与P点连接CP,取AB中点F连接P
已知,在△ABC中,BD为AC中线,CE为AB中线,BD、CE交于点O,求证BC的中线AF过点O.延长AO交BC于F'作BG平行EC交AO延长线于G则因E为AB中点,所以O为AG中点连接GC,则在三角
不是举个反例:重心总是在三角形每条中线的1/3处即重心到顶点距离是到对边中点距离的2倍,当这条直线和三角形一条边平行时候,分出来的小三角形和原三角形相似,由相似性可知,边长是原三角形的2/3,此时它的
一点,相等,一点,内心,相等如果你对我的回答满意,请【采纳为满意答案】,可继续询问,直至弄懂!
原题没有任何问题是原三角形面积的3/4证明:三角形ABC,三条中线AD,BE,CF过A,C分别做AP平行CE,CP平行AE,AP,CP交于P,连接PF,DP,AC与DP交于MAECP为平行四边形所以:
已知:△ABC的两条中线AD、CF相交于点O,连接并延长BO,交AC于点E.求证:AE=CE证明:如图,过点O作MN‖BC,交AB于点M,交AC于点N;过点O作PQ‖AB,交BC于点P,交AC于点Q.
两条中线的交点为O,按一定方向设三角形三边的向量为向量a,b,c,三边中点为D,E,F.假如说取的两条中线是AD和BE,那么,就用a,b,c表示向量CO和OF,就可以发现向量CO和OF平行,因为它们共
角平分线可以用量角器先量好,在用直尺把顶点与量好的平分角的点相连,中线是用尺子量好线段的中点把中点与相对的顶点连接,就ok
重心内心(即内切圆圆心)性质:到三边距离相等外心(即外接圆圆心)性质:到三定点距离相等
高和垂线平行或重合,高和中线相交或重合.
试试.先推导一下三角形的中线公式.设△ABC的三个角A,B,C所对的边分别是a,b,c,它们的中点依次为D,E,F,则AD的长可以这样求:在△ABC中,cosB=(a²+c²-b&
三角形中,两边的中线交于一点这是一定的,下面只要求证另一边的中线一定也过这点即可以了.可设BE交AD于H,同理可得DH/AH=EH/BH=1/2所以H与G重合,即得证
三角形角平分线性质:1.三角形角平分线是一条线段;2.三角形角平分线分对边成两条线段,与角的两条边对应成比例即若AD是△ABC的平分线,则BD/CD=AB/AC=s△ABD/s△ACD;3.三角形的三
三角形的三条中线交于三角形内一点,这一点就是三角形的_重_心
每个三角形有三条中线、三条角平分线、三条高.它们都分别相交于一点,三条角平分线的交点、三条中线的交点...钝角三角形三条高,有两条在三角形外部,交点在三条高线的延长线上
证明;设AD,BE,CF,分别是△ABC对应的中线,交点为O,根据重心的性质AO=2OD,AD=3OD,所以S△BOD=1/3S△ABD又AD=BD,则S△ABD=1/2S△ABC所以S△BOD=1/
简单!把三角形(ABC)三边当作三条线段,先画出两边(AB,BC)的中线,焦点记作O点由中线定理得,OA=OB,OB=OCso,OA=OB=OC得:O点到A,C距离相等,有:一点导线段两端点距离相同,
是错误的前面的先不说,关看后面那”三条高“就不对了,因为钝角三角形只有1条高在内面,2条在外面,题目中没有写出,所以是错误的