为什么c大于0且丨a-b c丨大于丨c丨二次函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:58:35
均值不等式1/a+1/b大于等于2*/(ab)^1/2,1/a+1/c大于等于2*/(ac)^1/2,1/b+1/c大于等于2*/(bc)^1/2相加即得.
法1切线法下证:a^2-3a+2(a)^0.5>=0,设t=(a)^0.5即证明t*(t-1)^2*(t+2)>=0,显然.故a^2+2(a)^0.5>=3a,b^2+2(b)^0.5>=3b,c^2
ac/b>0:ac和b同号bca(b-c)>0:a和b-c同号如果b>0,则根据上面第2条,c0,那么a所以:b0,根据第1条,ac所以:a负b负c正abc正
/a+c/-/b+c/-/a+b/=a+c-(-b-c)-a-b=a+c+b+c-a-b=2c再问:是对的吗?ab的2次方小于0,a+b大于0,且/a/=1,/b/=2,求/a-3分之一/+(b-1)
-c/a0所以不等号不变-bcad
因为两个分母分别是a和b所以乘以最简公分母ab,这样就可以去掉分母了
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca=1/2*(a2+b2+b2+c2+c2+a2)+ab+2bc+2ca]>=1/2*(2ab+2bc+2ca)+2ab+2bc+2ca=3ab
作出f(x)=log2(X+1)的图像f(a)/a=(f(a)-f(0))/(a-0)表示点(a,f(a))与(0,0)连线的斜率同理:f(b)/b表示点(b,f(b))与(0,0)连线的斜率f(c)
∵a(a+b+c)≤(1/2)[a2+(a+b+c)2]bc≤(1/2)(b2+c2)∴a(a+b+c)+bc≤(1/2)[a2+(a+b+c)2+b2+c2]∵(1/2)[a2+(a+b+c)2+b
a=b=c=4带进去就不对
ab≤(a^2+b^2)/2bc≤(b^2+c^2)/2ca≤(c^2+a^2)/2三个相加得ab+bc+ca=1≤a^2+b^2+c^2∴a^2+b^2+c^2≥1不等式两边同时加上2×(ab+bc
设,其中1个小于0那么abc
a^2-b^2-c^2-2bc=a^2-(b^2+c^2+2bc)=a^2-(b+c)^2=(a-b-c)(a+b+c)由于a>0,b>0,c>0所以a+b+c>0又abc任意两数之和大于第三个数所以
先排序,a>b>c(可以等于,不方便打)又abc>0,若c>0,则得证,所以只有另一种情况b0,又ab+bc+ac=a(b+c)+bc>0a>-b-c所以(-b-c)(b+c)+bc=-(b^2+bc
证明:(a+b+c)²=a²+b²+c²+2(ab+bc+ac)=a²+b²+c²+2=1/2(a²+b²)+
设f(X)=(x-a)(x-b)(x-c),则f(x)=x3-(a+b+c)x2+(ab+bc+ac)x-abc由已知当x
∵b/a+a/b≥2(√b/a×√a/b)=2×1=2c/a+a/c≥2(√c/a×√a/c)=2×1=2c/b+b/c≥2(√c/b×√b/c)=2×1=2∴1/a+1/b+1/c=(a+b+c)/
理由是这样的由于(a-b)^2+(a-c)^2+(b-c)^2≫0即a^2+b^2+c^2≫ab+ac+bc=1从而(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+