为什么(∫uf(u)du)=xf(x)?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:05:08
为什么(∫uf(u)du)=xf(x)?
∫(0到x)f(t)dt和∫(0到t)f(u)du,是相等的,为什么呢?

因为f(t)和f(u)本来表示的是同个函数关系,只是f(t)中的自变量用t表示的,f(u)中的自变量用u表示的.只要积分区间相同,原函数自然相同.比如说,你的第一个积分区间是[0,x],第二个积分区间

求不定积分∫x^3/(1+x^8)dx 令u=x^4 化为 1/4∫du/(1+u^2)^1/2

很简单的问题,arctanx‘=1/1+x^2,你说怎么做,而且你还化错了

∫g(u)(x-u)²du,上限x下限0变限积分求导

积分变上限函数的被积函数里有x的,一般情况是要把x弄到积分号之外才能使用积分变上限函数的求导法则通常做变量替换(如t=x-u)即可,但这里不行于是要另外找一个方法,这个就比较灵活此题中我们采用把平方项

一个定积分的问题,xf(x)-∫(0到X)f(u)du=∫(0到x)(f(x)-f(u))du ,这步转化是怎么转的,

xf(x)=∫(0到x)f(x)duf(x)跟u没有关系,所以uf(x)(0到x)=xf(x)-0f(x)=xf(x).

积分上限函数uf(u)du(0到x)求导后为多少

求导后是xf(x)再问:为什么再答:直接把上限代入被积函数即可再问:为什么不用求出原函数再答:不需要啊再问:不理解为什么可以直接代进去再答:这个是书上的定理,如果象你说的求了原函数再求导,反而麻烦了。

令u=Y/X,为什么可得出dY/dX=X*du/dX+u?

用的是乘积法则:d(uv)=udv+vduY=uXdY/dX=d(UX)/dX=(du/dx)*X+u*(dX/dX)=(du/dx)*X+u

变限积分求导问题:上限x下限0:∫ f(u^2)du 结果为什么等于f(x^2)

1.我觉得你好像误会了什么……在回头自己看看书2.记A(u)=∫上限sqrt(u)下限0e^(-t^2)dt显然A(x)为我们所有解,A(0)=0,记a(u)为A(u)的导函数所以∫上限x下限0a(u

微积分中为什么令x-t=u则dt=-du?

t=x-u把t和u都看成是变量的时候,对上式取微分左边=dt,右边=d(x-u),此时x视作常量,所以d(x-u)=d(-u)=-du所以有:dt=-du

对 ∫(0到x)(x-u)f(u)du 求导是什么?

(x-x)f(x)=0再问:不对的我会了分还是给你吧!

u的导数关于du的不定积分,即:∫u'du=?例如:∫(x²)'dx²=?

∫(x²)'dx²=∫(2x)(2xdx)=4∫x^2dx=(4/3)x^3+C

x+y=u,为什么du=dx+dy?

左右两边同乘以d,再去括号,即得du=dx+dy.x+y=u,d(x+y)=dudx+dy=dudu=dx+dy.

x=ln(u^2-1),dx={2u/(u^2-1)}du

这是复合函数求导,把u^2-1看做整体,设u^2-1=y,则lny的导数为(1/y)*dy,在对u^2-1=y求导则dy=(2u)du,所以dx={2u/(u^2-1)}du

已知G(x)=∫dv∫f(u+v-x)du 求G`(x) 和 G``(x)

u和v应该是关于x的函数吧?本题我把步骤写的细点,不知楼主能否看明白.ps:大学毕业好多年了,知识掌握不太牢了.本题为复合函数以及两函数乘法求导结合的题目.思路是:将“∫dv”和“∫f(u+v-x)d

matlab du/dt=d(du)/dx^2 x属于(0,1),t属于(0,T]u(0,t)=u(1,t)=0u(x,

#include#include#includevoidmain(){doubleu[16][16],x[16];doubleh=0.0625,r=0.5,y;inta=1,i,j;y=r*h*h/a

∫上面是xt, 下面是1 f(u)du=? 对x求导.

d/dx∫(1→xt)ƒ(u)du=d(xt)/dx•ƒ(xt)=tƒ(xt)

∫(0,x)f(x-t)dt求导.令u=x-t,du=-dt,原式=-∫(x,0)f(u)du为什么

∫[0,x]f(x-t)dt令u=x-t,则du=-dt∫[0,x]f(x-t)dt=∫[x-0,x-x]f(u)(-du)=-∫[x,0]f(u)du实际上只是做了u=x-t的变换,并没有交换上下限

对0到x上f(x+t)dt的变上限积分求导时令 x+t=u 则dt=du 为什么不是d(x+t)=du即dx+dt=du

首先题目里的变量是t,从积分里的dt这里看出来,所以x不是变量就跟题目里dx存在,x是变量,t是常数一样一般默认(习惯)x是参数只是因为大家习惯用x了,其实变量就是从微分dt那里看的其次是题目里存在d

对∫(2x,x)uf(u)du x求导?

2x,x分别是积分的上限和下限吗?如果是可以这样求导:设F(x)=∫(2x,x)uf(u)du,对x求导有F'(x)=[2xf(2x)]*(2x)'-xf(x)*(x)'=[2xf(2x)]*2-xf