(e^x^2 2cosx-3) x^4 x趋于0极限为7 12 过程?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:07:08
e^x和括号里的分别求导y'=e^x(cosx+sinx)+e^x*(-sinx+cosx)=2cosx*e^x()里看成是e^x的系数
积分[e^x/2*(cosx-sinx)]/√cosxdx=积分2[1/2e^x/2*(cosx)^(1/2)-1/2e^x/2*sinx(cosx)^(-1/2)]dx=积分[2e^x/2*(cos
∵∫e^(-x)cosxdx=e^(-x)sinx+∫e^(-x)sinxdx(应用分部积分法)==>∫e^(-x)cosxdx=e^(-x)sinx-e^(-x)cosx-∫e^(-x)cosxdx
连续用两次罗比达法则即可lim[e^(2x)-e^(-x)-3x]/(1-cosx)=lim[2e^(2x)+e^(-x)-3]/sinx=lim[4e^(2x)-e^x]/cosx=(4e^0-e^
利用分部积分法,∫e^x*cosxdx=∫cosxd(e^x)=e^xcosx-∫e^xd(cosx)=e^xcosx+∫e^x*sinxdx=e^xcosx+∫sinxd(e^x)=e^xcosx+
洛必达法则
再问:抱歉这步是怎么来的?公式是???我是初学者,谢谢!再答:不知你问的是分部积分法还是公式法,首先,∫【x(cosx+e^2x)dx】,按乘法分配律,得到:∫【(xcosx+xe^2x)
不是化简到没有,(1+e^X)是2,1-cosX是相当于X^2/2,分子有X的4次方,分母(sinX)^3相当于是X的3次方,分子是高阶无穷小,所以极限是0
原式=∫cosxdx+∫e²dx+∫3xdx=sinx+e²x+3x²/2+C
∫(sinx+cosx)e^xdx=∫(sinx+cosx)de^x=(sinx+cosx)e^x-∫(cosx-sinx)e^xdx=(sinx+cosx)e^x-∫(cosx-sinx)de^x=
可以分子为有界(限?)量,分母为无限量,分式为0
使用等价无穷小即可求解因为x→0时,e^x-1~x1-cosx~x^2/2所以原式=lim(sinx)^3/(x*x^2/2)=2lim(sinx)^3/x^3又x→0时,sinx~x所以原式=2
lim【x→0】(e^3x-e^x)ln(1+x)/(1-cox)=lim【x→0】[】(e^3x-e^x)]x/(x²/2)=2lim【x→0】[(e^3x-e^x)]/x=2lim【x→
lim(x->0)(e^3-e^(-x)-4x)/(1-cosx)=lim(x->0)[e^(-x)-4)/sinx=(1-4)/1=-3
换元法:∫(e^x+sinx)/(e^x-cosx)dx=∫d(e^x-cosx)/(e^x-cosx)=ln|e^x-cosx|+C或令u=e^x-cosxdu=(e^x+sinx)dx原式=∫(e
凑微分法∫(e^2x-cosx/3)dx=∫e^2xdx-∫cosx/3dx=1/2∫e^2xd(2x)-3∫cosx/3d(x/3)=1/2e^2x-3sinx/3+c
∫(e^sinx)*x*(cosx)^3-sinx/(cosx)^2dx=∫(e^sinx)*x*(cosx)^3dx-∫sinx/(cosx)^2dx=
一、f(x)的导数是3x^2sinx+x^3cosx-sinx二、f(x)的导数是xe^x/(1+x)
limx->0(e-e^cosx)/[(1+x^2)^1/3-1]0/0的形式,应用洛必塔法则=limx->0-e^cosx*(-sinx)/1/3(1+x^2)^(-2/3)*2x=limx->0s