(cosx)^(3 2) 积分 1 e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:35:29
∫e^x(1+sinx)dx/(1+cosx)=∫e^xdx/(1+cosx)+∫e^xsinxdx/(1+cosx)1+cosx=2cos(x/2)^2sinx/(1+cosx)=tan(x/2)=
积分[e^x/2*(cosx-sinx)]/√cosxdx=积分2[1/2e^x/2*(cosx)^(1/2)-1/2e^x/2*sinx(cosx)^(-1/2)]dx=积分[2e^x/2*(cos
答案见图片
先把(e^x)(sinx-cosx)放到微分号d里面去,变为积分号1/2)xd(e^x)(-cosx-sinx)然后分布积分
怎么求在开区间(0,π/2)上的定积分?应该是闭区间原式=1/[1+e^(cosx-sinx)]=1/{1+e^[√2sin(π/4-x)]}∫e^sinxdx/(e^sinx+e^cosx)=x/[
通分一下上式可化简为cos^2x原函数为x/2+sin2x/4+C定积分为pi/2
用万能代换∫1/1+cosxdx=∫1/(2cos^2(x/2))dx=1/2∫sec^2(x/2)dx=tanx/2+C
设t=tanx,则x=arctant,dx=dt/(1+t²),sec²x=1+t²故∫sin²x/(1+cos²x)dx=∫tan²x/(
S(cosx/e/\x)dx=S(cosx*e/\-x)dx=sinxe^(-x)+S(sinx*e^(-x))=sinxe^(-x)-cosxe^(-x)-S(cosx*e/\-x)dx所以2*S(
∫1/(cosx+sinx)dx=∫(cosx-sinx)dx/(cos2x)=∫cosxdx/cos2x-∫sinxdx/cos2x=∫dsinx/[1-2(sinx)^2]+∫dcosx/[2(c
被积函数为周期函数,周期为2π,则0~2π上积分等于-π~π上的积分.而被积函数为奇函数,奇函数在关于原点对称的区间上积分等于0,得到答案.
∫(sinx+cosx)e^xdx=∫(sinx+cosx)de^x=(sinx+cosx)e^x-∫(cosx-sinx)e^xdx=(sinx+cosx)e^x-∫(cosx-sinx)de^x=
∫[(1-cosx)dx]/(x-sinx)=∫d(x-sinx)/(x-sinx)=ln(x-sinx)+C原式=∫(x+1-4)dx/(x²+2x+3)=∫(x+1)dx/(x²
万能代换t=tan(x/2),则x=2arctant,dx=2dt/(1+t^2),cosx=(1-t^2)/(1+t^2),所以∫dx/(cosx+3)=∫dt/(t^2+2)=1/√2×arcta
∫e^x*(1+sinx)/(1+cosx)dx=∫e^x/(1+cosx)dx+∫e^xsinx/(1+cosx)dx=∫e^x/(1+cosx)d+∫sinx/(1+cosx)de^x=∫e^x/
de^x=e^xdxdx/1-e^x=1/e^x-e^2xde^x=1/t-t^2dt(其中t=e^x)=(1/t+1/1-t)dt=d(lnt-ln1-t)固dx/1-e^x=d(lne^x-ln(
设F'(x)=e^(-x)^2(定积分[cosx,1]e^(-t)^2)dt=F(1)-F(cosx)d(定积分[cosx,1]e^(-t)^2)dt/dx=[F(1)-F(cosx)]'=F'(1)