两个随机变量在独立同分布且服从正太分布的性质

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:53:59
两个随机变量在独立同分布且服从正太分布的性质
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设两个随机变量X和Y相互独立且分别服从参数为a1,a2的泊松分布,则X+Y服从参数为什么的泊松分布?

X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料

n个服从几何分布的独立同分布随机变量,加起来之后的方差怎么求?

几何分布期望为5的话,其参数p=1/5=0.2,对应单个随机变量方差DX=(1-p)/p^2=20从而DY=DX/n=20/n

概率论随机变量x和y独立同分布,均服从指数分布exp(2);求随机变量2x+3y的分布密度函数

Y1和Y2不独立的情况下,它们函数的独立性也会受到相应的影响.但是你式子中表达的意思不太清楚,你写的g1g2分别是以x1x2为自变量的函数吗?你后面又问道Y1Y2之间的关系,是要提示它们是随机变量吗?

两个独立的、服从正态分布的随机变量,它们的差的分布?

方差都是相加的.如果X,Y独立,一定有D(X±Y)=D(X)+D(Y)再问:会不会答案错了??按照相减计算会得出书后的答案再答:那有可能是答案错了,D(X±Y)=D(X)+D(Y)是独立的随机变量的方

已知随机变量X,Y相互独立,且同服从分布N(0,1),又Z=根号(X^2+Y^2),求E(X),D(X)

E(Z)=E(X^2+Y^2)=E(X^2)+E(Y^2)=[DX+(EX)^2]+[DX+(EX)^2]=1+0+1+0=2因为DX=E(X^2)-(EX)^2D(Z)=D(X^2+Y^2)=D(X

设随机变量X,Y相互独立,且都服从两点分布B 则P(X=Y)=

P(X=Y)=P(X=0)P(Y=0)+P(X=1)P(Y=1)=1/9+4/9=5/9如有意见,欢迎讨论,共同学习;如有帮助,再问:为什么这么算啊?再答:根据独立性。书上讲更全面一些,建议您看书。

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

设X,Y为独立且服从相同分布的连续型随机变量,求P{X≤Y}

因为XY服从相同的分布所以它们各自的分布函数和分布密度表达式是相同的,只是变量不同而已(一个是X一个是Y)所以就设分布函数是F(U),分布密度是f(u),对应到XY就是把U换成XY就行了..像LS说的

假定随机变量X,Y独立同分布,都服从N(0,1),计算:E[MAX(X,Y)]

Z=max(x,y)当x,y)独立时,F(z)=[Fx(z)]^2-->fz(z)=2fx(z)F(z)E[MAX(X,Y)]=∫2zf(z)F(z)dz(代入标准正态分布密度函数,经分步积分可以算出

随机变量x,y相互独立且服从同一分布,若其数学期望相同,方差是不是不一定相同

如果方差不存在怎么办?同一分布是指同一个分布,不是同一类分布

X与Y是两个相互独立同分布且他们都服从标准正态分布,则X^2/(X^2+Y^2)的期望是多少

因为X^2/(X^2+Y^2)+Y^2/(X^2+Y^2)=1所以E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E(1)=1因为X、Y服从相同的分布,且相互独立,所以:E[X^2

随机变量X与Y互相独立,且服从同一分布,求P{X≤Y}

解:设随机变量X的密度函数是:f(x),随机变量Y的密度函数是:f(y)因为他们互相独立,所以可以知道他们的联合密度函数:f(x,y)=f(x)*f(y)又f(y,x)=f(y)*f(x)所以f(x,

设随机变量X与Y独立同分布,且都服从标准正态分布N(0,1),试证:U=X^2+Y^2与V=X/Y相互独立

这是个著名的问题.也很有工程用途: 当一个二维信号联合正态时,幅值和相位是独立的.见图:

随机变量X,Y独立且同分布.服从于N(0,1/2).求|X-Y|的期望与方差

Z=X-Y服从N(0,1).E(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)E(|Z|^2)=E(Z^2)=D(z)=1D(|z|)=1-2/π